Chapter 01
Introduction

In this chapter, we introduce good information that is derived from raw facts. These raw
facts are known as data. Data are likely to be managed most efficiently when they are
stored in a database. You will learn what a database is, and what it does. You will also
learn about various types of databases and why database design is so important as well.
File system data management is now largely understood as the characteristics of stored
file systems. Database and database management systems have become essential for
managing businesses, governments, schools, universities, banks, etc. Also in the chapter,

we will talk about the responsibility of a database administrator, and the architecture of

2-tier and 3-tier.

In this chapter, you will learn:

1.1 Database and Database Systems

1.2 History
1.2.1 File System
1.2.2 Network and Hierarchical Databases
1.2.3 Relational Databases
1.2.4 Now and the Future

1.3 DBMS
1.3.1 Structure
1.3.2 Client/ Server and Web

Chapter 01 — Introduction 3

1.1 Database and Database Systems

Data is the keyword to describe the systematic storage of data. Database

Management System (DBMS) is the collection of interrelated and persistent data and is a

set of application programs used to access, update and manage.

Since the computer was developed, it has been used in various fields as follows.

:

e computing machine = H/W + numerical analysis S/W

e database = H/W + database management system S/W

e automatic processing system = H/W + process control S/W

e typing machine = H/W + word processor

e game station = H/W + game S/W

e audio/video station= H/W + audio /video playing S/W

e telephone = H/W + voice networking S/W

e etc.

A database is systematic storage of data and a database management system is a system
software to build a computerized database.

A database management system consists of

e Acollection of interrelated and persistent data is usually referred to as a database (DB).
e A set of application programs used to access, update and manage that data from the

database management system (DBMS).

The goal of a DBMS is to provide an environment that is both convenient and efficient to

use in
e Storing information into the database.
e Retrieving information from the database.

Databases are usually designed to manage large bodies of information as below:

4 Chapter 01 — Introduction

e Definition of structures for information storage (data modeling).

e Provision of mechanisms for the manipulation of information (file and systems
structure, query processing).

e Providing for the safety of information in the database (crash recovery and security).

e Concurrency control if the system is shared by users.

1.2 History

File Systems were types of data used to store, retrieve and update. The Data were stored
as a file system with complexity difficult to control then data models were developed. Those
models are the hierarchical model and the network model. The size of data usage increased
rapidly and also those models are difficult to use while relational databases have appeared.

1.2.1 File System

Databases have been historically an essential part of any information processing system.
The origins of databases go back to libraries, governmental, business, and medical records.
There is a very long history of information storage, indexing, and retrieval.

Before the 1960s, file systems were used to store, retrieve and update data. The structure

is shown in Figure 1.1, and each department manages its files respectively.

Figure 1.1 File System

Personnel Record

Personal
File

Personnel Department ——p ID Name Address Rank Evaluation

Accounting Record

Accounting
File

Accounting Department

|

ID Name Address Basic Salary Bonus

To see why database management systems are necessary, let's look at a typical "file-
processing system™ supported by a conventional operating system. The application is a

savings bank:

Chapter 01 — Introduction 5

e Savings account and customer records are kept in permanent system files.
e Application programs are written to manipulate files to perform the following tasks:
— Debit or credit an account.
— Add a new account.
— Find an account balance.
— Generate monthly statements.

Development of the system proceeds as follows:

e New application programs must be written as the need arises.
e New permanent files are created as required.

e But over a long period files may be in different formats.

e Application programs may be in different languages.

So we can see there are problems with the straight file-processing approach:

Data redundancy and inconsistency
— Same information may be duplicated in several places.

— All copies may not be updated properly.

Difficulty in accessing data
— May have to write a new application program to satisfy an unusual request.
— e.g. find all customers with the same postal code.

— Could generate this data manually, but a long job...

Data isolation
— Data in different files.
— Data in different formats.

— Difficult to write new application programs.

Multiple users

— Want concurrency for faster response time.

— Need protection for concurrent updates.

— E.g. two customers withdrawing funds from the same account at the same time -
account has $500 in it, and they withdraw $100 and $50. The result could be $350,
$400 or $450 if no protection.

e Security problems

— Every user of the system should be able to access only the data they are permitted

to see.

6 Chapter 01 — Introduction

— e.g. payroll people only handle employee records, and cannot see customer
accounts; tellers only access account data and cannot see payroll data.
— Difficult to enforce this with application programs.
e Integrity problems
— Data may be required to satisfy constraints.
— e.g. no account balance below $25.00.
— Again, difficult to enforce or change constraints with the file-processing approach

These problems and others led to the development of database management systems.

1.2.2 Network and Hierarchical Databases

In the 1960s, computers become cost-effective for private companies along with the
increased storage capacity of computers. Databases (DB) and Database Management
Systems (DBMS) were developed. Figure 1.2 shows DB and DBMS.

Figure 1.2 DB and DBMS

Personnel Record

Database Management
System (DBMS)

\»
]

Personal Records

Accounting Record

Accounting Records

Database (DB)

Two main data models were developed: the hierarchical model (IMS) and the network
model (CODASYL) in which access to the database is through low-level pointer operations
linking records. Storage details depended on the type of data to be stored. Thus adding an
extra field to the database requires rewriting the underlying access/modification scheme.
Figure 1.3 shows the hierarchical model and Figure 1.4 shows the network model.

Chapter 01 -

Figure 1.3 Hierarchical model

Introduction 7

Daposit record

Depositno~~ [Amount |

Figure 1.4 Network model

Customer record
Customers \ Clty \ Address \ \ Depost link \
Customers \ Chun \Siem Reap\ Siem Reap\ Roh \DounKen\ Takeo \ Kim Kep \ Kep \
/ \
Deposits | %0 100000 | [647 [a5,000

Customers Deposit link Deposits

900 100,000 |
| Chun | Siem REED| Siem Reap‘—/’{

556 90,000 |
| Roh |DuunKeo| Takeo

647 85000 |
| Kim | Kep | Kep

801 150,000 |

The emphasis in the above two models was on records to be processed, not the overall

structure of the system. A user would need to know the physical structure of the database

in order to query for information. One major commercial success was the SABRE system

from IBM and American Airlines.

In the 1970s, several camps of proponents argue about the merits of these competing

systems while the theory of databases leads to mainstream research projects. Two main

prototypes for relational systems were developed during 1974-77.

1.2.3 Relational Database

In 1970-72, E.F. Codd at IBM proposed a relational model for databases in a landmark

paper on how to think about databases. He disconnects the schema (logical organization)

8 Chapter 01 — Introduction

of a database from the physical storage methods. This system has been standard ever since.

In the relational model, records are stored only in tables shown in Figure 1.5.

e Ingres: Developed -at UCB (University of California, Berkeley). This ultimately led
to Ingres Corp., Sybase, MS -SQL Server,. This system used QUEL as query language.

e System R: Developed at IBM (International Business Machines) San Jose and led to
IBM's SQL/DS and DB2, Oracle, HP's Allbase, Tandem's Non-Stop SOI-,. This system
used SEQUEL as query language.

Figure 1.5 Relational model

Customers Deposits
Name City Address | Account Account Amount
Roh | Doun Keo| Takeo 296 900 100,000
Roh |Doun Keo| Takeo 647 556 90,000
Kim Kep Kep 801 647 85,000
Kim Kep Kep 647 801 150,000
Chun |Siem ReapSiem Reap| 900

These systems provide nice examples of how theory leads to best practice. The term

Relational Database Management System (RDBMS) is coined during this period.
In 1976, P. Chen proposed the Entity-Relationship (ER) model for database design

giving yet another important insight into conceptual data models. Such higher-level
modeling allows the designer to concentrate on the use of data instead of logical table
structure.

In the early 1980s, the commercialization of relational systems begins as a boom in
computer purchasing fueled the DB market for business. In the mid-1980s, SQL (Structured
Query Language) becomes the "intergalactic standard™, and DB2 becomes IBM's flagship
product.

Network and hierarchical models fade into the background, with essentially no
development of these systems today but some legacy systems are still in use. Development
of the IBM PC gives rise to many DB companies and products such as RIM, RBASE 5000,
PARADOX, 0S/2 Database Manager, Dbase Ill, IV (later Foxbase, even later Visual
FoxPro), Watcom SQL.

Chapter 01 — Introduction 9

In the early 1990s, an industry shakeout begins with fewer surviving companies
offering increasingly complex products at higher prices. Much development during this
period centers on client tools for application development such as PowerBuilder (Sybase),
Oracle Developer, VB (Microsoft), etc. The client-server model for computing
becomes the norm for future business decisions. Development of personal productivity
tools such as Excel/Access (MS) and ODBC. This also marks the beginning of Object
Database Management Systems (ODBMS) prototypes.

In the mid-1990s, the usable Internet/WWW appears. A mad scramble ensues to allow
remote access to computer systems with legacy data. Client-server frenzy reaches the
desktop of average users with little patience for complexity while Web/DB grows

exponentially.

1.2.4 Now and the Future

In the late ‘90s, the large investment in Internet companies fueled tools market boom for
Web/Internet/DB connectors. Active Server Pages, Front Page, Java Servlets, JDBC,
Enterprise Java Beans, ColdFusion, Dream Weaver, Oracle Developer 2000, etc. are
examples of such offerings. Open-source solutions come online with the widespread use of
GCC, CGI, Apache, MySQL, etc. Online Transaction processing (OLTP) and online
analytic processing (OLAP) comes of age with many merchants using point-of-sale (POS)

technology on a daily basis.

In the early 21st century, the decline of the Internet industry as a whole but solid growth
of DB applications continues. More interactive applications appear with the use of PDAs,
POS transactions, consolidation of vendors, etc. Three main (western) companies

predominate in the large DB market: IBM (buys Informix), Microsoft, and Oracle.

Future trends show that huge (terabyte) systems are appearing and will require novel
means of handling and analyzing data. Large science databases such as genome projects,
geological, national security, and space exploration data. Clickstream analysis is happening
now. Data mining, data warehousing, and data marts are commonly used techniques today.
More of this in the future without a doubt. Smart/personalized shopping using purchase

history, time of day, etc.

Successors to SQL (and perhaps RDBMS) will be emerging in the future. Most attempts
to standardize SQL successors have not been successful. SQL92, SQL2, and SQL3 are still
underpowered and more extensions are hard to agree upon. Most likely this will be

10 Chapter 01 — Introduction

overtaken by other emerging techniques. XML with Java for databases is the current poster

child of the "next great thing". Check-in tomorrow to see what else is news.

Mobile database use is a product now coming to market in various ways. Distributed

transaction processing is becoming the norm for business planning in many arenas.

Probably there will be a continuing shakeout in the RDBMS market. Linux with Apache
supporting MySQL (or even Oracle) on relatively cheap hardware is a major threat to high-
cost legacy systems of Oracle and DB2 so these have begun pre-emptive projects to hold

onto their customers.

Object Oriented Everything, including databases, seems to be always on the verge of
sweeping everything before it. Object Database Management Group(ODMG) standards are
proposed and accepted and maybe something comes from that.

Ethical/security/use issues tend to be diminished at times but always come back. Should
you be able to consult a database of the medical records/genetic makeup of a prospective
employee? Should you be able to screen a prospective partner/lover for genetic diseases?
Should amazon.com keep track of your book purchasing? Should there be a national
database of convicted sex offenders/violent criminals /drug traffickers? Who is allowed to
do Web tracking? How many times in the last six months did you visit a particular sex chat
room/porn site/political satire site? Who should be able to keep or view such data? Who
makes these decisions? The history of database research is shown in Figure 1.6.

1.3 DBMS

The evolution of DBMS and a broad spread rapidly to improve data sharing, reduce data
redundancy, and are also a program data independence. The responsibility of the database
administrator (DBA) and the architecture of 2-tier, 3-tier, and n-tier are described in the
point as well.

1.3.1 Structure

A DBMS can be an extremely complex set of software programs that controls the
organization, storage, and retrieval of data (fields, records, and files) in a database. The
basic functionalities that a DBMS must provide are:

1. A model language to define the schema of each database hosted in the DBMS, according
to the DBMS data model.

Chapter 01 — Introduction 11

2. Data structures optimized to deal with big amounts of data recorded to a permanent data
storage device, which are very slow compared to the primary storage (volatile main
memory).

3. A database query language and report writer to allow users to interactively interrogate
the database, analyze its data and update it according to the users’ privileges on data.

4. A transaction mechanism, that ideally would guarantee the ACID properties, in order
to ensure data integrity despite concurrent user access (concurrency control) and faults

(fault tolerance).

Figure 1.6 the history of database

Data Collection and Database Creation O
(1960& and earller) O
-Primitive file processing

l

Database Management Systems O

{(1970s- early 1980s) O

-Hierarchical and network database systemsO
-Relational database systemsQO

-Data modeling tools: Entity-relationship model, etc. O
-Indexing and data organization techniques: O
-Tree, hashing, etc. O

—-Query interfaces, forms, and reportsdO

-Query processing and query optimization
-Transaction management: recovery, concurrency
control, etc. O

-Online transaction processing(OLTP) O

-

ﬁﬁggﬁg_fgg?&? Systems O Web-based Databases Systems
-Advance Data ModelingO (1990s- present) O
extended-relational O - XML-based database systems
object-oriented O .
object-relational, deductive O - Web mining
-Application-oriented: O

Spatial, temporal O
Multimedia, active, scientific O
Knowledge bases

v

Data Warehousing and Data Mining O
(late 1980s-present) O

-Data Warehouse and OLAP Technology O
-Data Mining and Knowledge discovery

¥

New Generation of Integrated Information System (2000-....)3 ‘

The DBMS accepts requests for data from the application program and instructs the
operating system to transfer the appropriate data. The overall structure of the DBMS is

shown in Figure 1.7

12 Chapter 01 — Introduction

User

User
Interaces

DBMS

Operating
System

Disk
Storate

Figure 1.7 structure of the DBMS

Native Applications Database
Users Programmers Administrator
4
" Database
Application Application Q
Interfaces Frograms Hery Schema
i I
.] . v
DL Quen bEL
Application 7| InterpreteriCompiler Proogssor {| Interpreter/Compiler
Object Codes H

Database Manager
[}

File Manager

Data File
Data Dictionary

The data structures in the database are as follows.

— data files: store the data.

— indices: provide for fast access to data items.

— data dictionary (= System catalog): store info about the structure of the DB.

— statistical data: store info about the statistical data in the DB.

— log file: store the insertion/deletion/update of the relations for recovery when a system

crash happens.

Data abstraction

The DBMS provides users with tables by using layered abstraction shown in Figure 1.8

Chapter 01 — Introduction

Figure 1.8 DBMS tables by using layered abstraction

Tablem _AB [C TablelTTol

Pages

create table M (---);
create table N (-);
select* from M;

=9 regards the disk as a logical collection
of "files" & provides "tables"

c:\mydb'm

=9 regards the disk as a logical collection of

albje
4o l= GID
DBMS
File m abec
c d
¥y Z
file system
Disk |ubc||cd ”xyzl

"page sets" & provides "files"

disk manager

=9 regards the disk as a logical collection of

L

Disk Controller

"cylinders, tracks and sectors" & provides
"page sets"

13

The major purpose of a database system is to provide users with an abstract view of the

system. The system hides certain details of how data is stored and created and maintained.

Complexity should be hidden from database users.

There are several levels of abstraction from the bottom to the top:

1.

Physical Level:

— Lowest level of abstraction.

— How the data are stored.

— e.g. index, B-tree, hashing.

— Complex low-level structures described in detail.

Conceptual Level:

Next highest level of abstraction.

Describes what data are stored.

Describes the relationships among data.

Database administrator level.

14 Chapter 01 — Introduction

View Level:

— Highest level.
— Describes part of the database for a particular group of users.
— Can be many different views of a database.

— E.g. tellers in a bank get a view of customer accounts, but not of payroll data.

Figure 1.9 The three levels of data abstraction

View 1 View 2 View n

Conceptual
Level

Users

Database
Administrator

Fhysical
Level

When a DBMS is used, information systems can be changed much more easily as the

organization's information requirements change. New categories of data can be added to

the database without disruption to the existing system.

DBA
A database administrator (DBA) manages the database and the DBMS shown in Figure 1.7.

The tasks performed by the DBA are categorized as follows.

DBMS management

database management

object management: tables /views/indices/clusters etc.
user management

performance tuning/backup

Organizations may use one of kind of DBMS for daily transaction processing and then

move the detail onto another computer that uses another DBMS better suited for random

inquiries and analysis. Overall systems design decisions are performed by data

administrators and systems analysts. Detailed database design is performed by data

administrators.

Chapter 01 — Introduction 15

Database servers are specially designed computers that hold the actual databases and
run only the DBMS and related software. Database servers are usually multiprocessor
computers with RAIQ (Redundant Arrays of Independent Disks) disk arrays used for stable
storage.

Connected to one or more servers via a high-speed channel, hardware database
accelerators are also used in large-volume transaction processing environments. The

instance of the Oracle server is shown in Figure 1.10

Figure 1.10 the Oracle DBMS Server

@ @ Client Processes

(TCP/TP Network >

Memory &_ prngr@« Server Processes
-
progr:@‘\ progr: @
Database Redo Log Shared
Buffer Cache Buffer Pool
System Global Area
Large Pool Cursor

4
am) tgw) Gnon <ckpt> Gm> @ Background Prockssés
TS O (e G

Database Files

Control Data Redo Log
Files Files F11 es

—————.———

A number of background processes are run in the main memory.

— DBW: Database Writer
— LGWR: Log Writer

— SMON: System Monitor
— CKPT: Checkpoint

— ARChn: Archiver

— Dnnn: Dispatcher

— RECO: Recoverer

— PMON: Process Monitor
— LCKO: Lock

16 Chapter 01 — Introduction

— SNPn: Job Queue
— QMNN: Queue Monitor

1.3.2 Client/Server and Web
Through the appearance of Local-Area-Networks, PCs came out of their isolation, and were
soon not only being connected mutually but also to servers.

Client/Server-computing was born. Servers today are mainly file and database servers;
application servers are the exception. However, database servers only offer data on the
server; consequently, the application intelligence must be implemented on the PC (client).
Since there are only the architecturally tiered data server and client, this is called 2-tier
architecture.

This model is actually the opposite of its popular terminal-based predecessor that had
its entire intelligence on the host system. The 2-tier and 3-tier client/server models are
shown in Figure 1.11.

Figure 1.11 the 2-tier and 3-tier client/server models

| Application I Application

Network

Netw ork

Application Server

[Application Server]

Ne twork

[Application Server]

tree-tier client/server architechture

two-tier client/server architechture

One reason why the 2-tier model is so widespread is because of the quality of the tools

and middleware that has been most commonly used since the ‘90s: Remote- SQL, ODBC,

Chapter 01 — Introduction 17

relatively inexpensive and well-integrated PC tools (like Visual Basic, Power-Builder, MS
Access, 4-GL-Tools by the DBMS manufactures).

In comparison, the server side uses relatively expensive tools. In addition, the PC-based
tools show good Rapid-Application-Development (RAD) qualities i.e. those simpler
applications can be produced in a comparatively short time. The 2-tier model is the logical
consequence of the RAD tools’ popularity: for many managers, it was simpler to attempt
to achieve efficiency in software development using tools, than to choose the steep and

stony path of "brainware".

Why 3-tier?
Unfortunately, the 2-tier model shows striking weaknesses that make the development
and maintenance of such applications much more expensive. The software connection of

the 2-tier model is shown in Figure 1.12, and the problems are listed below.

Figure 1.12 the software connection in the 2-tier model

Client DB Server

Application 1 Remote DBMS1] OB
—[Application n Remote DBMSn] DBn

[JDBC/NETS]

[TCPAP]

[Wired Metwork]

e The complete development accumulates on the PC. The PC processes and presents
information which leads to monolithic applications that are expensive to maintain.
That's why it's called a "fat client".

e In the 2-tier architecture, business. -logic is implemented on the PC. Even though the
business logic never makes direct use of the windowing system, programmers have to

be trained for the complex API under Windows.

18 Chapter 01 — Introduction

e Windows OS and Mac systems have tough resource restrictions. For this reason,
application programmers also have to be well trained in systems technology, so that
they can optimize scarce resources.

e Increased network load: since the actual processing of the data takes place on the remote
client, the data has to be transported over the network. As a rule, this leads to increased
network stress.

e How to conduct transactions is controlled by the client. Advanced techniques like two-
phase-committing can't be run.

e PCs are considered to be "untrusted" in terms of security, i.e. they are relatively easy to
crack. Nevertheless, sensitive data is transferred to the PC, for lack of an alternative.

e Data is only "offered" on the server, not processed. Stored procedures are a form of
assistance given by the database provider. But they have a limited application field and
proprietary nature.

e Application logic can't be reused because it is bound to an individual PC- program.

e The influences on change-management are drastic: due to changes in business

e politics or law (e.g. changes in VAT computation) processes have to be changed. Thus
possibly dozens of PC-programs have to be adapted because the same logic has been
implemented numerous times. It is then obvious that in turn each of these programs has
to undergo quality control because all programs are expected to generate the same
results again.

e The 2-tier-model implies a complicated software-distribution procedure: as all of the
application logic is executed on the PC, all those machines (maybe thousands) have to
be updated in case of a new release. This can be very expensive, complicated, prone to
error, and time-consuming. Distribution procedures include the distribution over
networks (perhaps of large files) or the production of adequate media like CDs. Once
it arrives at the user's desk, the software first has to be installed and tested for correct
execution. Due to the distributed character of such an update procedure, system

management cannot guarantee that all clients work on the correct copy of the program.

The 3-tier architecture endeavor to solve these problems. This goal is achieved

primarily by moving the application logic from the client back to the server.

Chapter 01 — Introduction 19

What are 3-tier and n-tier architecture?
The 3-tier architecture is illustrated in Figure 1.13.
e C(Client tier

This tier is responsible for the presentation of data, receiving user events, and
controlling the user interface. The actual business logic (e.g. calculating added value tax)
has been moved to an application server. Today, web server scripts such as PHP and JSP

offer an alternative to traditionally written PC applications.

Figure 1.13 the 3-tier architecture

The 3-tier Client-Server Architecture

b

Datamanagement Level
File Server Database Serve
-] Application Level
.‘) Limm
J- -

ﬁ i i

e Application Server-tier

Windows

Application Serv

This tier is new, i.e. it isn't present in 2-tier architecture in this explicit form. Business
objects that implement the business rules "live" here, and are available to the client tier.
This level now forms the central key to solving 2-tier problems. This tier protects the data
from direct access by the clients.

The object-oriented analysis "OOA", on which many books have been written, aims in
this tier: to record and abstract business processes in business objects. This way it is
possible to map out the applications-server-tier directly from the CASE —tools that support
OOA.

Furthermore, the term “component” is also to be found here. Today the term pre-

dominantly describes visual components on the client side. In the non-visual area of the

20 Chapter 01 — Introduction

system, components on the server side can be defined as configurable objects, which can
be put together to form new application processes.
e Data Server-tier

This tier is responsible for data storage. Besides the widespread relational database
systems, existing legacy systems databases are often reused here.

It is important to note that boundaries between tiers are logical. It is quite easily possible
to run all three tiers on one and the same (physical) machine. The main importance is that
the system is neatly structured and that there is a well-planned definition of the software

boundaries between the different tiers.

The advantage of 3-tier architecture

As previously mentioned, 3-tier architecture solves a number of problems that are inherent
to 2-tier architectures. Naturally, it also causes new problems, but these are outweighed by
the advantages. The software connection of the 3-tier model is shown in Figure 1.14, and

the advantages are listed below.

Figure 1.14 the software connection of the 3-tier model

Client Application Server DE Server

presentation 1 Jd—‘u VWeb Server | Data Mgmt 1

Appl. Logic 1

Appl. Logic k

D

b

Middleware

Protocol 1 [Protocol 2] Protocol 3
[TCPAP]
[Wiredfiireless MNetwork]

o Clear separation of user-interface control and data presentation from application logic.
Through this separation, more clients are able to have access to a wide variety of server
applications. The two main advantages for the client- applications are clear: quicker
development through the reuse of pre-built business-logic components and a shorter

test phase, because the server—components have already been tested.

Chapter 01 — Introduction 21

e Re-definition of the storage strategy won't influence the clients. RDBMS offers certain
independence from storage details for the clients. However, cases like changing table
attributes make it necessary to adapt the client's application. In the future, even radical
changes, like let's say switching from an RDBMS to an OODBS, won’t influence the
client. In well-designed systems, the client still accesses data over a stable and well-
designed interface that encapsulates all the storage details.

e Business objects and data storage should be brought as close together as possible,
ideally they should be together physically on the same server. This way - especially
with complex accesses - network load is eliminated. The client only receives the results
of a calculation - through the business object, of course.

e In contrast to the 2-tier model, where only data is accessible to the public, business
objects can place applications-logic or "services" on the net. As an example, an
inventory number has a "test digit”, and the calculation of that digit can be made
available on the server.

e As a rule servers are "trusted" systems. Their authorization is simpler than that of
thousands of "untrusted” client PCs. Data protection and security is simpler to obtain.
Therefore it makes sense to run critical business processes that work with security-
sensitive data, on the server.

e Dynamic load balancing: if bottlenecks in terms of performance occur, the server
process can be moved to other servers at runtime.

e Change management: of course, it's easy - and faster - to exchange a component on the
server than to furnish numerous PCs with new program versions. For example, it is
quite easy to run the new version of a tax object in such a way that the clients
automatically work with the version from the exact date that it has to be run. It is,
however, compulsory that interfaces remain stable and that old client versions are still
compatible. In addition, such components require a high standard of quality control.
This is because low quality components can, at worst, endanger the functions of a whole
set of client applications. At best, they will still
irritate the operator of the system.

Further, it is relatively simple to use wrapping techniques in 3-tier architecture. As
implementation changes are transparent from the viewpoint of the object's client, a forward
strategy can be developed to replace the legacy system smoothly. First, define the object's

interface. However, the functionality is not newly implemented but reused from an existing

22 Chapter 01 — Introduction

host application. That is, a request from a client is forwarded to a legacy system and

processed and answered there.

In a later phase, the old application can be replaced by a modem solution. If it is possible
to leave the business object’s interfaces unchanged, the client application remains
unaffected. A requirement for wrapping is, however, that a procedure interface in the old
application remains existent. It isn’t possible for a business object to emulate a terminal. It
is also important for the project planner to be aware that the implementation of wrapping

objects can be very complex.

DB Programming on the Web

Just as there is a diversity of programming languages available and suitable for
conventional programming tasks, there is a diversity of languages available and suitable
for Web DB programming. There is no reason to believe that any one language will
completely monopolize the Web programming scene, although the varying availability and
suitability of the current offerings are likely to favor some over others. Several Web
programming languages are currently available to implement the application logic

component in Figure 1.14.

Java is both available and generally suitable, but not all application developers are likely
to prefer it over languages more similar to what they currently use, or, in the case of non-
programmers, over higher level languages and tools. This is OK because there is no real
reason why we must converge on a single programming language for the Web any more
than we must converge on a single programming language in any other domain.

The Web does, however, place some specific constraints on our choices: the ability to
deal with a variety of protocols and formats (e.g. graphics) and programming tasks;
performance (both speed and size); safety; platform independence; protection of
intellectual property; and the basic ability to deal with other Web tools and languages.
These issues are not independent of one another. A choice that seemingly is optimal in one

dimension may be sub-optimal or worse in another.

Chapter 01 — Introduction 23

e CGI (Common Gateway Interface)

A Web daemon executes a CGI program on the server and returns the results to the
client (e.g. a query against a database server), rather than simply returning a copy of the
referenced file, as it does with an HTML reference. Parameters are passed from the server

to the CGI program as environment variables.

The program is sometimes written in C, C++, or some other compiled programming
language, but more often it is written in a scripting language (e.g. Perl, Tel, sh). To prevent
damage to the server, CGI programs generally are stored in a protected directory under the

exclusive control of the webmaster.

e Java

Java is the leading contender for a full feature programming language targeted at
Internet applications. It’s advantages are: familiarity (derived from C++), platform
independence (will run on any platform which implements the Java Virtual ~ Machine),
performance (byte-code compiled faster than fully interpreted), and safety (downloaded

applets are checked for integrity, and only interpreted by trusted Virtual Machine).

Java is being aggressively distributed and promoted by Sun Microsystems (Oracle Co.),
which developed it, and, evidently, sees it as a way to loosen Microsoft's and Intel's grip on
the computer platform. The leading web browsers, now includes the Java VM, and
JavaScript/JSP are appearing on web sites everywhere. Even Microsoft, which is promoting
Visual Basic Script for this purpose, has licensed Java from Sun and will be supporting it

in its browsers.

The list of Java licensees is long, and includes other major players, such as IBM. Sun
(Oracle Co.), is distributing a Java developer's kit free of charge as of this writing, in the
interest of promoting Java's widespread use. It recently announced the development of
microprocessors optimized for Java for different markets (from cellular phones to high
performance 3D "Network Appliances”. If their strategy is successful, the application
platform is raised, and Java displaces Windows or other OS's as the target platform of
application developers, then the whole ballgame changes, and the impact is potentially

across the entire computer industry, not just the Internet.

24 Chapter 01 — Introduction

J2EE J2SE J2ME
i éCommunica\i?n POS

gworkstation t | e

i
=

: I : Ul .. Pager
: : Set box '
: .S i PC, laptop T\‘}P cell phone

i i -~

: ~

e

J %__WP" A

Sc:een Phoneé smart phone | ﬁ

card
cpc

'
Memory ioMB iMB 512KB=—512KB 8bit
64bit 32bit 32bit

The ability to deliver a platform-independent application, or, more correctly, an OS-
independent application, is of great appeal to developers, who spend a large portion of their
resources developing and maintaining versions off their products for the different
hardware/software platform combinations. With Java, one set of sources, and, even more
important, one byte-compiled executable, can be delivered for all hardware/software

platforms.

[_
class loader 1—{ class library ‘

javac ‘ bytecode checker ‘
b

interpreter JUM

¥

i

While the interpretation of a byte-compiled program is slower than the execution of a
native executable, the claim is made that, once interpreted, the resulting executable is of
comparable performance, which means Java applications could be interpreted once and the
result cached locally and thereafter executed optimally. This is great news for Unix, OS/2,
and Macintosh vendors and users, who often suffer from limited or delayed availability of
software and high prices due to limited demand, and, likewise, for non-Intel chip and

computer vendors.

Chapter 01 — Introduction 25

It is potentially disastrous news for Microsoft and Intel, who, arguably, often sell their
products solely based on their market position, rather than their technical merit. Hopefully,
the result will be a more level playing field for vendors and more choices for consumers

and not just the replacement of Microsoft and Intel with Sun (Oracle Co.).

That said, not everyone agrees that Java is the answer. The most common complaint is
that Java is not simple; it is a slimmed-down, cleaned-up C++, with a big GUI library. C++
programming is not described by most as "simple”, and Java programming is not much
simpler, especially when compared to HTML, or some other languages put forward as its

competition. Java is the market leader at the moment, so it is the obvious target.

e JavaScript

JavaScript is Netscape's scripting language for integrating HTML, Netscape plug-ins,
and Java applets. It is based on Java, and is mostly syntactically compatible, but differs
from Java in that it is interpreted, rather than compiled, only supports built certain built-in
objects and user-defined functions, rather than full support for user-defined classes with
inheritance and methods, and is integrated with HTML, rather than invoked from HTML
files, weakly typed, and dynamically bound.

JavaScript is meant to extend HTML to be more of a full programming language while
retaining HTML's ease of use. The principal criticism of Java programming is that much
more complex than HTML programming, more like C++ programming, and therefore is

not as accessible to users as HTML. This is an issue that JavaScript attempts to address.

Client Server
{Drequest—
> R —
(W o]] e
i 730 Web Server _ |
) ®response 3 #8080
Serv. Engine ?). emcutﬂ
avascrp
HTTP e A —

26 Chapter 01 — Introduction

e Python

Python is an interpreted, object-oriented language developed as a full-featured, but
easy-to-use, scripting language, by Guido van Rossum at CWI in the Netherlands. Initially
developed in a Unix environment, Python is now available on PCs and Macs, and

applications are portable across platforms.

Python has developed a substantial, although still modest, following, as a scripting
language, an application development language, and an embedded extension language.
Python's design was most influenced by ABC, a little-known language also developed at

CWI. Python's syntax evokes C and C++ but doesn't stick too closely to those languages.

Python fans tout its clear, intuitive syntax in comparison to C, C++, Java, Perl, shell
languages, and most other interpreted languages, the completeness of its type system and
its suitability for significant application development in comparison to Tcl, and its
extensibility with Python and C/C++ libraries. Like Java, Perl and Tcl, Python offers a

portable GUI library, several.

Perl advocates complain about the lack of regular expression matching and output
formatting natively in Python. Perl is a little more of a sysadmin's shell language than
Python, and Tcl is a little simpler and less capable. Python is more of a regular
programming language, but simpler and easier to program than Java. But, all are suited to

Internet programming.

e VBScript (Visual Basic Script)

VBScript is Microsoft's planned candidate for an Internet scripting language. It is a
subset of Visual Basic, Microsoft's popular visual programming language, with no GUI
building capability, unsafe operations removed, and with access to other applications via
OLE.

VBScript source code is embedded in HTML and downloaded to the client in the
HTML file, where it is compiled and executed in association with its runtime libraries.
Microsoft envisions an OLE Scripting Manager on the client side with which browsers
interact with a specified interface. The Scripting Manager would manage the compilation
and invocation of downloaded scripts in Visual Basic Script or any other scripting

language.

Chapter 01 — Introduction 27

Microsoft also intends to support Visual Basic and Java in this way. The idea is to make
multiple language runtimes pluggable into browsers. Microsoft intends to elicit the
cooperation of various consortia and vendors in defining and standardizing this interface.
Microsoft intends to support VBScript on its various Windows platforms and the Macintosh

and will license the technology to UNIX vendors.

e PHP (PHP Hypertext Pre-processor) Server Side Script

In the early days of the spread of the Internet, websites were created using Perl language
and C language. However, the problem with the Perl language and the C language is that it
is inefficient and very difficult to develop. The biggest problem with the Perl language and
the C language is the processing method. Each time a client connects one by one, a process
is created. Therefore, as the number of connections increases, overload occurs more

frequently, and the server often goes down.

Therefore, various Web script languages have been developed to supplement the above
problems and provide faster service. Microsoft's ASP, Sun's JSP, and Zend's PHP are
famous Web scripting languages. In the above three languages, when a client connects one
by one, it creates a process first and then creates a thread in it to respond. Since tasks are
processed in units of threads, the load on the server is reduced. PHP is developed in the C
language, so its syntax is similar to C and its execution speed is also fast.

Because PHP is free, it does not cost money to use, and it is independent of the platform
by supporting multiple OSs such as Windows, Linux, and Unix. Also, it runs a bit faster on
Linux, a free OS, and is called APM (Apache/PHP/MySQL) because it works well with
MySQL, a free RDBMS. Usually, PHP works in conjunction with a web server called
Apache. When a user requests a web document, Apache processes the HTML document,

and PHP processes the PHP Script.

28 Chapter 01 — Introduction

- B8 Summary a

The efficient storage and manipulation of data is the major goal of the database
management system. A database is an organized collection of related data. Only data
that has been processed provides meaningful information that enables an organization
to make critical decisions. Large data files were stored, processed, and retrieved using
computer file processing systems before DBMS. Computer file processing systems
have limitations such as data duplications, limited data sharing, and no program data
independence. A database technique was created to get around these restrictions.
Program data independence, improved data sharing, and reduced data redundancy are
the major benefits of the DBMS method. This chapter has provided a general
overview of DBMS as well as its historical development. The responsibilities of a
Database administrator, two-tier, and three-tier architecture were analyzed in this
chapter.

- , ,. Questions

What is the data?
What is the information?

What are the different between data and information?
What are the disadvantages of the file processing system?
What is the Database? Give an example

What is the DBMS?

What are the advantages of the DBMS?

S ENOIR R CORNIDR e

Chapter 01 — Introduction 29

Ca= Exercises

Please look at figure 1.13 the 3-tier architecture from the textbook and a
summary of its processing.

Please summary of the role of a database administrator (DBA).

Please draw about 2-tier client/server architecture and 3-tier client/ server
architecture and explain in brief.

Please explore on the internet to find the various categories of

the data model and explain them in brief.

Chapter 02

Relational Model

This chapter is dedicated to the relational model which is in use since the late 1970s by E.F.
Codd (Edgar Frank Codd). Various operations in relational algebra and relational calculus are
given in this chapter. After completing this chapter, the reader should be familiar with the
following concepts of evolution and the importance of the relational model, terms in the
relational model like tuple, domain, cardinality, and degree of relation, and operations in
relational algebra and relational calculus, the difference between relational algebra and
relational calculus.
In this chapter, you will learn:
2.1 Overview
2.2 Relation
2.3 Database Scheme
2.4 Keys
2.5 Relational Algebra
2.5.1 Fundamental Operations
2.5.2 Additional Operations
2.6 The Tuple Relational Calculus

Chapter 02 — Relational Model 33

2.1. Overview

The relational model for large shared data is written by E.F. Codd (Edgar Frank Codd) of
IBM in 1970.
The first database systems were based on network and hierarchical models. The relational
model was first proposed by E.F. Codd in 1970 and the first such systems (notably INGRES
and System/R) were developed in the 1970s. The relational model is now the dominant model
for commercial data processing applications.

A relational database consists of a collection of tables, each having a unique name. A
row in a table represents a relationship among a set of values. Thus, a table represents a
collectin of relationships. There is a direct correspondence between the concept of a table and
the mathematical concept of a relation. A substantial theory has been developed for relational
databases.

The text uses long attribute names instead of abbreviation words in the notes as follows.

e customer-name instead of cname

e customer-city instead of ccity

e Dbranch-city instead of bcity

e branch-name instead of bname

e account-number instead of account#
e loan-number instead of loan#

e banker-name instead of banker

The terms commonly used by the user, model, and programmers are given below:

User Model Programmer
Row Tuple Record
Column Attribute Field
Table Relation File

2.2. Relation

Mathematicians define a relation to be a subset of a Cartesian product of a list of domains.
Mathematic terms ‘relation’ and ‘tuple’ is placed of ‘table’ and ‘row’ that are used for the
relational model.

We can add, delete and modify rows to reflect changes in the real world. A row of a table

will consist of an n-tuple where n is the number of attributes. Actually, the table contains

34 Chapter 02 — Relational Model

a subset of the set of all possible rows. We refer to the set of all possible rows as the
Cartesian product of the sets of all attribute values.

e Figure 2.1 shows the Deposit and Customer tables for our banking example

e The deposit table has four attributes.

e For each attribute there is a permitted set of values, called the domain of that attribute.
e E.g. the domain of bname is the set of all branch names.

Figure 2.1 the Deposit and Customer relations

bname account# cname balance chame street ceity
Downtown 101 Johnson 500 Johnson Pender Vancouver
Lougheed Mall 215 Smith 700 Smith North Burnaby
SFU 102 Hayes 400 Hayes Curtis Burnaby
SFU 304 Adams 1300 Adams No.3 Road Richmond
Jones Oak Vancouver

Let D1 denote the domain of bname, and D2, D3, and D4 the remaining attributes'
domains respectively. We may denote this as

D, XD2 X D3 X D4

for the deposit table, where D1, D2, D3, and D4 denote the set of all branch names, all
account numbers, all customer names and all balances, respectively.

In general, for a table of n columns, we may denote the Cartesian product of D1, D2 ,
Dn by

X"iz1 Dj
Then, any row of the deposits consisting of a four-tuple (v1, v2, V3, V4)

vle D1,v2e D2,v3 e D3,v4 e D4

In general, a deposit contains a subset of the set of all possible rows. That is, a deposit is a
subset of

D1 x D2 x D3 x D4 or abbreviated to x%=1 Di
In general, a table of n columns must be a subset of
X"iz1Di (all possible rows)
Mathematicians define a relation to be a subset of a Caresian product of a list of domains.

You can see the correspondence with our tables. The mathematical terms 'relation' and
'tuple’ in place of 'table' and 'row' are used for the relational model.

Chapter 02 — Relational Model 35

Some more formalities:

e Let the tuple variable t refer to a tuple of the relation R.

e We say teR to denote that the tuple t is in relation to R.

For the first tuple t in relation to deposit,

e Then t[bname] = t[1] = the value of t on the bname attribute.

e So t[bname] = t[1] = "Downtown",

e and t[cname] = t[3] = "Johnson™.

We'll also require that the domains of all attributes be indivisible units.

e A domain is atomic if its elements are indivisible units.

For example, the set of integers is an atomic domain.

The set of all sets of integers is not.

Why? Integers do not have subparts, but sets do, the integers comprising them
We could consider integers non-atomic if we thought of them as ordered lists of
digits.

2.3. Database Scheme

The difference between logical design (a database scheme) and structure of a database file
(database instance). The relation between all attributes and domains is called a relation
scheme.

We distinguish between a database scheme (logical design) and a database instance (data
in the database at a point in time). A relation scheme is a list of attributes and their
corresponding domains. For example, the relation scheme for the deposit relation:

Deposit-scheme= (bname, account# , cname, balance)

We may state that deposit is a relation on scheme Deposit-scheme by writing
deposit(Deposit-scheme). If we wish to specify domains, we can write:

(bname: string, account#: integer, cname: string, balance: integer).

Note that customers are identified by name. In the real world, this would not be allowed,
as two or more customers might share the same name. Figure 2.2 shows the E-R diagram
for a banking enterprise.

36 Chapter 02 — Relational Model

Figure 2.2 E-R diagram for the banking enterprise

customer branch

The relation schemes for the banking example used throughout the text are:

Branch-scheme = (bname, assets, bcity)

Customer-scheme= (cname, street, ccity)

Deposit-scheme= (bname, account#, cname, balance) Borrow-scheme =
(bname, loan#, cname, amount)

Some attributes appear in several relation schemes (e.g. bname, cname). This is legal
and provides a way of relating tuples of distinct relations. Why not put all attributes in one
relation?

Suppose we use one large relation instead of customer and deposit:

Account-scheme= (bname, account#, cname, balance, street, ccity)

e If a customer has several accounts, we must duplicate her or his address for each
account.

e Ifacustomer has an account but no current address, we cannot build a tuple, as we have
no values for the address.

e We would have to use null values for these fields.

e Null values cause difficulties in the database.

e By using two separate relations, we can do this without using null values

2.4. Keys

A super key is a set of attributes that uniquely identify each tuple of a relation. A candidate
key is a super key with no redundant attributes known as a candidate key i.e should not
contain any column that contains duplicate data. A primary key is a specific choice of a
minimal set of attributes (columns) that uniquely specify a tuple (row).

Chapter 02 — Relational Model 37

More formally, if we say that a subset k of a relation R is a superkey for R, we are restricting
consideration to relations r(R) in which no two distinct tuples, t1 and t2, have the same
values on all attributes ink. In other words,

e Iftlandt2areinr,andtl#1t2,thentl[k]+# t2[k].

The notions of super key, candidate key, and primary key all apply to the relational
model. For example, in Branch-scheme,

o {bname} is a superkey.

e {bname, bcity} is a superkey.

o {bname, bcity} is not a candidate key, as the superkey {bname} is contained in it.

e {bname} is a candidate key.

o {bcity} is not a superkey, as branches may be in the same city.

e We will use {bname} as our primary key. The primary key to Customer-scheme is
{cname}.

2.5. Relational Algebra

Requesting information from a database by the user is used query language. Relational
Algebra was procedural is used in this language. There are a lot of operations in this
language such as select, project, rename, Cartesian product, union, and set-difference.
Moreover, there are additional functions as well like set-intersection, natural join, division,
and assignment.

A query language is a language in which a user requests information from a database. These
are typically higher-level than programming languages. They may be one of:

e Procedural, where the user instructs the system to perform a sequence of operations on
the database. This will compute the desired information.

e Nonprocedural, where the user specifies the information desired without giving a
procedure for obtaining the information.

A complete query language also contains facilities to insert and delete tuples as well as
to modify parts of existing tuples. Relational algebra is a procedural query language, and
operations produce a new relation as a result.

Six fundamental operations:
e select (unary): op (R) (P a predicate)
e project (unary): ms (R) (S a list of attributes)
e rename (unary): px (R) (X a relation name)
e Cartesian product (binary): RxS
e union (binary): RvS
o set-difference (binary): R-S
Several other operations are defined in terms of the fundamental operations:
set-intersection: RS
natural join: ReoS
division: R+5
assignment: R<-S

38 Chapter 02 — Relational Model

2.5.1. Fundamental Operations

Select

The select operation selects tuples that satisfy a given predicate. Select is denoted by a
lowercase Greek sigma (6), with the predicate appearing as a subscript. The argument
relation is given in parentheses following the 6.

Let Figure 2.3 be the Borrow and Brach relations in the banking operations

Figure 2.3 the Borrow and Brach relation

bname account# cname balance bname assets beity
Downtown 101 Johnson 1000 Downtown 9,000,000 Vancouver
Lougheed Mall 215 Smith 2000 Lougheed Mall 21,000,000 Bumaby
SFU 102 Hayes 1500 SFU 17,000,000 Bumaby

For example, to select tuples (rows) of the borrow relation where the branch is "SFU", we
would write

O bname='sFU' (BOFI’OW)
The new relation created as the result of this operation consists of one tuple:
(SFU, 15, Hayes, 1500) .

We allow comparisons using =, #, <, <, >, and > in the selection predicate. We also allow
the logical connectives v (or) and/\ (and). For example:

6 bname="Downtown ' A amount>1200 (BOrrow)
Suppose there is one more relation, Client, shown in Figure 3.4, with the scheme
Client_scheme = (cname, banker)

We might write to find clients who have the same name as their banker.

O cname=banker (Client)

Figure 2.4 the client relation

chame Backer
Hayes Jones
Johnson Johnson

Chapter 02 — Relational Model 39

Project

The project operation copies its argument relation for the specified attributes only. Since a
relation is a set, duplicate rows are eliminated. Projection is denoted by the Greek capital
letter pi (IT). The attributes to be copied appear as subscripts.

For example, to obtain a relation showing Customers and Branches, but ignoring amount
and loan#, we write

Tthname, cname (BOrTow)

We can perform these operations on the relations resulting from other operations. To
get the names of customers having the same name as their bankers,

Ticname (6 cname=banker (Client))

Think of selecting as taking rows of a relation, and project as taking columns of a
relation.

Cartesian Product
The Cartesian product operation of two relations is denoted by a cross (x), written

R1 x R for relations R1 and R»

The result of Ry x Rz is a new relationship with a tuple for each possible pairing of
tuples from R1 and R». In order to avoid ambiguity, the attribute names have attached to
them the name of the relation from which they came. If no ambiguity will result, we drop
the relation name. The result Client x Customer is a very large relation as shown in Table
2.1.

Table 2.1 the Client x Customer relation

Client.cname| banker | Customer.cname | street city

Hayes Jones
Johnson |Johnson

If R1 has n1 tuples, and Rz has n, tuples, then R = Ry x Rz will have n; 912 tuples. The
resulting scheme is the concatenation of the schemes of Ry and Rz, with relation names
added as mentioned.

To find the clients of banker Johnson and the city in which they live, we need information
on both Client and Customer relations. We can get this by writing

© banker =" Johnson* (Client X Customer)

However, the Customer.cname column contains customers of bankers other than
Johnson. Therefore, we want rows where Client.cname = Customer.cname. So we can write

40 Chapter 02 — Relational Model

© banker = Johnson' A Client.cname = Customer.cname (Client X Customer)

to get just these tuples.
Finally, to get just the customer's name and city, we need a projection:

Ticlient.cname, ccity (6 banker = * Johnson’ A Client.cname = Customer.cname (Client X Customer))

Rename

The rename operation solves the problems that occur with naming when performing the
Cartesian product of relation with itself. Suppose we want to find the names of all the
customers who live on the same street and in the same city as Smith. We can get the street
and city of Smith by writing

T street,ccity(O cname = 'smith' (Customer))

To find other customers with the same information, we need to reference the customer
relation again:

o p (Customer X (7 street, ccity ((O cname = smith (Customer))))

where P is a selection predicate requiring street and ccity values to be equal.

Problem: how do we distinguish between the two street values appearing in the
Cartesian product, as both come from the Customer relation?

Solution: use the rename operator, denoted by the Greek letter rho (p).
We write

PXx(R)

to get the relation R under the name of X.

If we use this to rename one of the two Customer relations we are using , the ambiguities
will disappear.

(L Customer.cname(G Cust2.street= Customer.street A Cust2.ccity = Customer.ccity)
(Customer X (7 street.ccity(O cname="smith* (Pcustz (Customer))))

Union

The union operation is denoted u as in set theory. It returns the union (set union) of two
compatible relations. For a union operation RUS to be legal , we require that:

e R and S must have the same number of attributes.
e The domains of the corresponding attributes must be the same.

To find all customers of the SFU branch, we must find everyone who has a loan or an
account or both at the branch. We need both Borrow and Deposit relations for this:

T cname (G bname = sFu' (BOITOW)) v 7 cname (G bname =* sFu' (Deposit))

As in all set operations, duplicates are eliminated, giving the relation of Figure 2.5(a).

Chapter 02 — Relational Model 41

Figure 2.5 the union and set difference operations

cname cname
®) Hayes (®) Hayes
Adams Adams

Set Difference

The set difference operation is denoted by the minus sign (-). It finds tuples that are in one
relation, but not in another. Thus R-S results in a relation containing tuples that are in R but
notin S.

To find customers of the SFU branch who have an account there but no loan, we write
Ttename (O bname =* sFu' (BOITOW)) - 7t cname (O bname = 'sFur (Deposit))
The result is shown in Figure 2.5(b). We can do more with this operation. Suppose we

want to find the largest account balance in the bank.
Strategy:

e Find a relation R containing the balances not the largest.
e Compute the set difference of R and the Deposit relation.
To find, we write

T Deposit balance(G Deposithalance < D.balance (D€pOSit X pp (Deposit))

This resulting relation contains all balances except the largest one. (See Figure 2.6(a)).
Now we can finish our query by taking the set difference:

TtDeposit balance(O Deposit balance < D.balance (D€POSIt X pp (Deposit))

42 Chapter 02 — Relational Model

Figure 2.6(b) shows the result.

Figure 2.6 find the largest account balance in the bank

balance
(a) 400 (b) balance
500 1300
700

2.5.2. Additional Operations

Additional operations are defined in terms of the fundamental operations. They do not add
power to the algebra, but are useful to simplify common queries.

Intersection

The set intersection operation is denoted by n and returns a relation that contains tuples that
are in both of its argument relations. It does not add any power as

RNS=R-(R-S)
To find all customers having both a loan and an account at the SFU branch, we write

T cname (O bname =' s Fu' (Borrow)) (1 7 cname (6 bname =* s Fu (Deposit))

Natural Join

Often we want to simplify queries on a Cartesian product. For example, to find all
customers having a loan at the bank and the cities in which they live, we need Borrow and
Customer relations:

T Borrow cname ccity (O Borrow.cname = Customer.cname (Borrow X Customer))

Our selection predicate obtains only those tuples pertaining to only one cname. This
type of operation is very common, so we have the natural join operation, denoted by a
sign. Natural join combines a Cartesian product and a selection into one operation. It
performs selection-forcing equality on those attributes that appear in both relation schemes.
Duplicates are removed as in all relation operations.

To illustrate, we can rewrite the previous query as

I cname, ccity (Borrow oo Customer)

The resulting relation is shown in Figure 2.7.

Chapter 02 — Relational Model 43

Figure 2.7 Joining Borrow and Customer relations

cname ccity
Smith Burnaby
Hayes Burnaby
Jones |Vancouver

We can now make a more formal definition of natural join.

e Consider r and s to be sets of attributes.

e We denote attributes appearing in both relations by r 01 s.

e We denote attributes in either or both relations by r U s.

Consider two relations R(r) and S(s).

e The natural join of Rand S, denoted by RS is a relation on the scheme
rus.

e It is a projection onto R U S of a selection on R x S where the predicate requires
R.Ai=S.A, for each attribute A; in r(ls.

Formally,

RooS=nws(crai=S.ALA. .. AR.AN=S.An (R XYS))
Where rlls = {Al,................... Anj}.

To find the assets and names of all branches which have depositors living in Stamford, we
need Customer, Deposit and Branch relations:

TC bname, assets (O ccity="Standford” (Customer co Deposit co Branch))

Note that oo is associative. To find all customers who have both an account and a loan at
the SFU branch:

7 cname (o bname='SFU' (Borrow « Deposit))

This is equivalent to the set intersection version we wrote earlier. We see now that there
can be several ways to write a query in relational algebra. If two relations R(r) and S(s)
have no attributes in common, then r(ls =, and Ro S =R X S.

Division

The division operation, denoted = is suited to queries that include the phrase "for all".
Suppose we want to find all the customers who have an account at all branches located in
Brooklyn.

Strategy: think of it as three steps.
1. We can obtain the names of all branches located in Brooklyn by
R1 = 7 bname (G beity =Brooklyn’ (Branchy))

44 Chapter 02 — Relational Model

2. We can also find all cname, bname pairs for which the customer has an account by

R2 = 7 cname, bname (Deposit)

3. Now we need to find all customers who appear in Rz with every branch name in R:
The divide operation provides exactly those customers:

T cname, bname (D€POSIt) <1 bname(G beity = Brookiyn* (Branch))

which is simply Rz +R;

Formally,
e Let R(r) and S(s) be relations.
o letsUr.

e Therelation R + S is a relation on scheme r - s.
e AtupletisinR =S if for every tuple ts in S there is a tuple tr in R satisfying both of
the following

tr[s] = ts[s]
tr[r - s] =t[r - s]

These conditions say that the r - s portion of a tuple tis in R =S if and
only if there are tuples with the r - s portion and the s portion in R for every value of
the s portion in relation S.

We will look at this explanation in class more closely. The division operation can be defined
in terms of the fundamental operations.

R+S=mrs(R)—mrs ((mrs (R) X S) -R)

Assignment

Sometimes it is useful to be able to write a relational algebra expression in parts using a
temporary relation variable (as we did with R; and R> in the division example). The
assignment operation, denoted +-, works like an assignment in a programming language.

We could rewrite our division definition as

T1 <—mrs(R)
T]_ <—7 r-s ((Tl X S)'R)

No extra relation is added to the database, but the relation variable created can be used
in subsequent expressions. Assignment to a permanent relation would constitute a
modification to the database.

Chapter 02 — Relational Model 45

2.5.2. Modifying the Database

Up until now, we have looked at extracting information from the database. We also need
to add, remove and change information. Modifications are expressed using the assignment
operator.

Deletion

Deletion is expressed in much the same way as a query. Instead of displaying, the selected
tuples are removed from the database. We can only delete whole tuples.

In relational algebra, a deletion is of the form
r<— r-E

where r is a relation and E is a relational algebra query. Tuples in r for which E is true
are deleted.

Some examples:
1. Delete all of Smith's account records.

Deposit <— Deposit — 6 cname="smith’ (Deposit)

2. Delete all loans with loan numbers between 1300 and 1500.
Deposit <—Deposit — 6 1oan# >= 1300" loan# =< 1500 (D€POSIt)
3. Delete all accounts at branches located in Needham.

I'1<— G beity= ‘Needham’ (D€POSIt 0o Branch)
2 <— [|bname, accountt,cname, balance(rl)
Deposit<—Deposit — 2

Insertion

To insert data into a relation, we either specify a tuple or write a query whose result is the
set of tuples to be inserted. Attribute values for inserted tuples must be members of the
attribute's domain.

An insertion is expressed by r<— UE
where r is a relation and E is a relational algebra expression.
Some examples:

1. Toinsert a tuple for Smith who has $1200 in account 9372 at the SFU
branch.

Deposit Deposit {('SFU', 9372, 'Smith’, 1200)}

2. To provide all loan customers in the SFU branch with a $200 savings

46 Chapter 02 — Relational Model

Account.

1 <—G bname="sru’ (BOrrow)

R < T bname,loan#,cname(rl)

Deposit <—Deposit U (r2 x {(200)})

Update
Updating allows us to change some values m a tuple without necessarily changing all.
We use the update operator, v, with the form

Yace(R)

where r is a relation with attribute A, which is assigned the value of expression E. The
expression E is any arithmetic expression involving constants and attributes in a relation.

Some examples:
1. To increase all balances by 5 percent:

7Y balance <— balance *1.05 (R)

This statement is applied to every tuple in Deposit.
2. To make two different rates of interest payment, depending on the balance account.

Y balance <—balance*1.06 (G balance > 10000 (D€pOSsit))
Y balance <—balance*1.05 (6 balance< 10000 (Deposit))

Note: in this example the order of the two operations is important.

2.6. The Tuple Relational Calculus
The relational calculus is nonoperational. The users define queries in terms of what they
want but not in terms of what the computer cannot compute.

The tuple relational calculus is a nonprocedural language. (The relational algebra was
procedural.) We must provide a formal description of the information desired.

A query in the tuple relational calculus is expressed as
{t1P(®}

i.e . the set of tuples t for which predicate P is true.
We also use the notation
¢ t[a] to indicate the value of tuple ton attribute a.
e tertoshow that tuple tisin relationr,
[]
Several tuple variables may appear in a formula. A tuple variable is said to be a free
variable unless it is quantified by a 3 or a V. Then it is said to be a bound
A formula is built of atoms. An atom is one of the following forms:
e s er, wheresisatuple variable, and r is a relation (is not allowed).

Chapter 02 — Relational Model 47

e 5[x]0 u[y], where and u are tuple variables, and s and y are attributes, and 0 is a
comparison operator (<, <, =, #, >, >).

e 5[x] 6 c, where cis a constant in the domain of attribute x.

Formulae are built up from atoms using the following rules:

e Anatom is a formula.

e IfPisaformula, then so are —P and (P).

e If Py and P, are formulae, then so are P1 v P2, P1 A P2 and P1 =P»

e If P(s) is a formula containing a free tuple variable s, then the followings are formulae
also.

3s € r(P(s)) and Vs € r(P(s))

Note some equivalences:

o PiAPy==(-Prv—P)

e Vter(P(t)=-ater(—P(t)
e Pi=>P=—P1VvP;

For example, to find the branch name, loan number, customer name and amount for loans
over $1200:

{t I t € Borrow A tfamount] > 1200}

This gives us all attributes, but suppose we only want the customer names. (We would
use project in the algebra.) We need to write an expression for a relation on scheme (cname).

{t 1 3s € Borrow (t[cname]=s[cname] A s[amount] > 1200)

In English, we may read this equation as "the set of all tuples t such that there exists a
tuple s in the relation Borrow for which the values of t and s for the cname attribute are
equal, and the value of s for the amount attribute is greater than 1200." The notation 3t €
r(Q[t]) means "there exists a tuple t in relation r such that predicate Q[t] is true".

How did we get the above expression? We needed tuples on scheme cname such that
there were tuples in Borrow pertaining to that customer name with amount attribute. The
tuples t get the scheme cname implicitly as that is the only attribute t is mentioned with.

Let's look at a more complex example. "Find all customers having a loan from the
'SFU' branch, and the the cities in which they live."

t13s e Borrow (t[cname]=s[cname] A s[bname] = 'SFU’
A Ju € Customer(u[cname]=s[cname] A t[ccity] = u[ccity]))}

In English, we might read this as "the set of all (cname, ccity) tuples for which cname
is a borrower at the 'SFU' branch, and ccity is the city of cname". Tuple variable s ensure
that the customer is a borrower at the 'SFU'. branch. Tuple variable u is restricted to pertain
to the same customer as s, and also ensures that ccity is the city of the customer.

48 Chapter 02 — Relational Model

The logical connectives A (AND) and v(OR) are allowed, as well as —(negation). We
also use the existential quantifier 3 and the universal quantifier V.

Some more examples:

1. Find all customers having a loan, an account, or both at the SFU branch:

{t| 3s € Borrow (t[cname]=s[cname] A s[bname] = 'SFU")
v —du € Deposit(tfcname]=u[cname] A u[bname] ='SFU")}

Note the use of the v connective. As usual, set operations to remove all duplicates.
2. Find all customers who have both a loan and an account at the SFU branch. Solution:
simply change the v connective in 1 to a A.
3. Find customers who have an account, but not a loan at the SFU branch.

{t| 3u € Deposit(t[cname]=u[cname] A u[bname] ='SFU")
v —ds € Borrow(t[cname]=s[cname] A s[bname] ='SFU")}

4. Find all customers who have an account at all branches located in Brooklyn.

(We used division in relational algebra.) For this example, we will use implication,
denoted by a pointing finger in the text, but by = here. The formula P = Q means P implies
Q, or, if P is true, then Q must be true.

{t I vu € Branch(u[bcity] = 'Brooklyn' =
—ds € Borrow(t[cname]=s[cname] A u[bname] =s[bname]))}

In English: "the set of all cname tuples t such that for all tuples u in the Branch relation,
if the value of u on attribute bcity is Brooklyn, then the customer has an account at the
branch whose name appears in the bname attribute of u." Division is difficult to understand.
Think it through carefully.

A tuple relational calculus expression may generate an infinite expression, e.g.

{t| —(t € Borrow)}

There are an infinite number of tuples that are not in Borrow! Most of these tuples
contain values that do not appear in the database. Therefore, we need to restrict the
relational calculus a bit.

e The domain of a formula P, denoted dom(P), is the set of all values referenced in P.
e These include values mentioned in P as well as values that appear in a tuple of a relation
mentioned in P.

e S0, the domain of P is the set of all values explicitly appearing in P or that appear in
relations mentioned in P.

e dom(teBorrow A tfamount]>1200) is the set of all values appearing in Borrow and 1200.
e dom(t| —~(teBorrow) is the set of all values appearing in Borrow.

Chapter 02 — Relational Model 49

We may say an expression {t | P(t)} is safe if all values that appear in the result are
values from dom(P). A safe expression yields a finite number of tuples as its result.
Otherwise, it is called unsafe. The tuple relational calculus restricted to safe expressions is
equivalent in expressive power to the relational algebra.

BE Summary ~

In the relational model, the data are stored in the form of tables or relations.
Each table or relation has a unique name. Tables consist of a given number of
columns or attributes. Every column of a table must have a name and no two
columns of the same table may have identical names.

The rows of the table are called tuples. The total number of columns or
attributes is known as the degree of the table. The relational model provides an
alternative way to express queries. The principle of the relational model is set by
E.F. Codd (Edgar Frank Codd) to use. This chapter also introduced concepts of
relational algebra and relational calculus. different operators like selection,
projection, rename, Cartesian product, union, intersection, natural join, division,

and also assignment were discussed with suitable examples

50 Chapter 02 — Relational Model

- ,',. Questions

1. What is the relational model?
2. What are the super key, candidate key, and primary key?
3. What are the differences between relational algebra and relational calculus?
4. What is the tuple?
5. What does it mean of word of relation in the relational model?
6. Please list down the kind of fundamental operation at least 6 operation.
&
— Q= Exercises ~
bname loan# cname balance bname assets bcity
ABA_TK 111 Gech 1000 ABA_TK 9,000,000 Takeo
ABA_KD 222 Kim 2000 ABA_KD 21,000,000 Kandal
SFU 333 Hayes 1500 SFU 17,000,000 PP

Figure 3.3 : The borrow and brach relations

According to figure 3.3 mentioned above, please write the formula of relational
algebra to solve the problem below:

1. Show all tuples that have value “101” in column “loan#”

2. Listall entries for ABA_TK (requires amount>2000)

3. Delete all of customer name “Gech” from branch name “ABA_TK”.

4. Delete all account at branches located in SFU.

Chapter 03
Relational Language-SQL

Objective

To Understand history of Relational Language-SQL
To explain DDL: Data Definition Language

To understand Views

To explain DML: Data Modification

To understand Embedded SQL

In this chapter, you will learn:

3.1 History of SQL
3.2 DDL.: Data Definition Language
3.2.1 Schema Definition in SQL
3.2.2 Integrity Constraints
3.2.3 Domain Types
3.3 Views
3.3.1 View Definition
3.3.2 Update Through Views and Null Values
3.3.3 Index Definition in SQL
3.4 DML: Data Modification
3.4.1 Insert
3.4.2 Update
3.4.3 Delete
3.4.4 Select (Data Retrieval)
3.4.5 Netsted Subqueies
3.4.6 Jointed Relation
3.5 Embedded SQL

Chapter 03 — Relational Language-SQL 53

3.1 History of SQL

SQL is the most popular computer language used to create, modify, retrieve and
manipulate data from relational database management systems. According to history,
during 1970s a group at IBM’s San Jose research center developed a database and then
Oracle to date. SQL is standardized by ANSI and ISO. The programming language is
integrated with SQL or use SQL commands to use in database.As time goes on, SQL is
more developed and more useful.

Commercial database systems require more user-friendly query languages. We will look
at SQL in detail. Although referred to as query languages, SQL contains facilities for
designing and modifying the database.

SQL (commonly expanded to Structured Query Language) is the most popular computer
language used to create, modify, retrieve and manipulate data from relational database
management systems (RDBMS). The language has evolved beyond its original purpose to
support object-relational database management systems. It is an ANSI/ISO standard.
During the 1970s, a group at IBM's San Jose research center developed a database system
"System R" based upon, but not strictly faithful to, Codd's model. Structured English Query
Language ("SEQUEL") was designed to manipulate and retrieve data stored in System R.
The acronym SEQUEL was later condensed to SQL because the word 'SEQUEL ' was held
as a trademark by the Hawker-Siddeley aircraft company of the UK. Although SQL was
influenced by Codd's work, Donald D. Chamberlin and Raymond F. Boyce at IBM were
the authors of the SEQUEL language design. Their concepts were published to increase
interest in SQL.

The first non-commercial, relational, non-SQL database, Ingres, was developed in 1974 at
U.C. Berkeley. In 1978, methodical testing commenced at customer test sites.
Demonstrating both the usefulness and practicality of the system, this testing proved to be
a success for IBM. As a result, IBM began to develop commercial products that
implemented SQL based on their System R prototype, including the System/38 (announced
in 1978 and commercially available in August 1979), SQL/DS (introduced in 1981), and
DB2 (in 1983).

At the same time Relational Software, Inc. (now Oracle Corporation) saw the potential of
the concepts described by Chamberlin and Boyce and developed their own version of a
RDBMS for the Navy, CIA and others. In the summer of 1979 Relational Software, Inc.

introduced Oracle V2 (Version2) for VAX computers as the first commercially available

54 Chapter 03 — Relational Language-SQL

implementation of SQL. Oracle is often incorrectly cited as beating IBM to market by two
years, when in fact they only beat IBM's release of the System/38 by a few weeks.
Considerable public interest then developed; soon many other vendors developed versions,
and Oracle's future was ensured.

It is often suggested that IBM was slow to develop SQL and relational products, possibly
because it wasn't available initially on the mainframe and Unix environments, and that they
were afraid it would cut into lucrative sales of their IMS database product, which used
navigational database models instead of relational.

But at the same time as Oracle was being developed, IBM was developing the System/38,
which was intended to be the first relational database system, and was thought by some at
the time, because of its advanced design and capabilities, that it might have become a
possible replacement for the mainframe and Unix systems.

SQL was adopted as a standard by ANSI (American National Standards Institute) in 1986
and 1SO (International Organization for Standardization) in 1987. ANSI has declared that
the official pronunciation for SQL is 'Es-Kju-El', although many English-speaking
database professionals still pronounce it as 'sequel'.

The SQL standard has gone through a number of revisions:

e 1986 SQL-86 (SQL-87): First published by ANSI. Ratified by 1SO in 1987.

e 1989 SQL-89: Minor revision.

» 1992 SQL-92 (SQL2): Major revision.

e 1999 SQL: 1999 (SQL3) Added regular expression matching, recursive gqueries,
triggers, non-scalar types and some object-oriented features. (The last two are somewhat
controversial and not yet widely supported.)

e 2003 SQL: 2003: Introduced XML-related features, window functions, standardized
sequences and columns with auto-generated values (including identity-columns).
Although SQL is defined by both ANSI and ISO, there are many extensions to and
variations on the version of the language defined by these standards bodies. Many of these
extensions are of a proprietary nature, such as Oracle Corporation's PL/SQL or Sybase,
IBM's SQL PL (SQL Procedural Language) and Microsoft's Transact-SQL.

It is also not uncommon for commercial implementations to omit support for basic features
of the standard, such as the DATE or TIME data types, preferring some variant of their
own. As aresult, in contrast to ANSI C or ANSI Fortran, which can usually be ported from

platform to platform without major structural changes, SQL code can rarely be ported

Chapter 03 — Relational Language-SQL 55

between database systems without major modifications. There are several reasons for this
lack of portability between database systems:

the complexity and size of the SQL standard means that most databases do not implement
the entire standard.

«the standard does not specify database behavior in several important areas (e.g. indexes) ,
leaving it up to implementations of the standard to decide how to behave.

« the SQL standard precisely specifies the syntax that a conformant database system must
implement. However, the standard's specification of the semantics of language constructs
is less well-de fined, leading to areas of ambiguity.

e many database vendors have large existing customer bases; where the SQL standard
conflicts with the prior behavior of the vendor's database, the vendor may be unwilling to
break backward compatibility.

« some believe the lack of compatibility between database systems is intentional in order
to ensure vendor lock-in.

SQL is designed for a specific, limited purpose - querying data contained in a relational
database. As such, it is a set-based, declarative computer language rather than an
imperative language such as C or BASIC which, being programming languages, are
designed to solve a much broader set of problems. Language extensions such as PL/SQL
are designed to address this by turning SQL into a full- fledged programming language
while maintaining the advantages of SQL.

Another approach is to allow programming language code to be embedded in and interact
with the database. For example, Oracle and others include Java in the database, while
PostgreSQL allows functions to be written in a wide variety of languages, including Perl,
Tel, and C.

One joke about SQL is that "SQL is neither structured, nor is it limited to queries,
nor is it a language." This is founded on the notion that pure SQL is not a classic
programming language since it is not Turing-complete. On the other hand, however, it is a
programming language because it has a grammar, syntax, and programmatic purpose and
intent. The joke recalls Voltaire's remark that the Holy Roman Empire was "neither holy,
nor Roman, nor an empire."

SQL contrasts with the more powerful database-oriented fourth-generation programming
languages such as Focus or SAS in its relative functional simplicity and simpler command

set. This greatly reduces the degree of difficulty involved in maintaining SQL source code,

56 Chapter 03 — Relational Language-SQL

but it also makes programming such questions as "Who had the top ten scores?' more
difficult, leading to the development of procedural extensions, discussed above.
However, it also makes it possible for SQL source code to be produced (and optimized) by
software , leading to the development of a number of natural language database query
languages, as well as 'drag and drop’ database programming packages with ‘object oriented'
interfaces. Often these allow the resultant SQL source code to be examined, for educational
purposes, further enhancement, or to be used in a different environment.
Technically, SQL is a declarative computer language for use with "SQL databases".
Theorists and some practitioners note that many of the original SQL features were inspired
by, but in violation of, the relational model for database management and its tuple calculus
realization. Recent extensions to SQL achieved relational completeness, but have
worsened the violations.
In addition, there are also some criticisms about the practical use of SQL.:
« The language syntax is rather complex (sometimes called "COBOL-like").
It does not provide a standard way, or at least a commonly-supported way, to split large
commands into multiple smaller ones that reference each other by name. This tends to
result in "run-on SQL sentences" and may force one into a deep hierarchical nesting when
a graph-like (reference-by-name) approach may be more appropriate and better repetition-
factoring.
« Implementations are inconsistent and, usually, incompatible between vendors.
« For larger statements, it is often difficult to factor repeated patterns and expressions
into one or fewer places to avoid repetition and avoid having to make the same change to
different places in a given statement.
» Confusion about the difference between value-to-column assignment in UPDATE and
INSERT syntax.
Anyway, SQL has become the standard relational database language. It has several parts:
1. Data definition language (DDL) - provides commands to
« Define relation schemes.
« Delete relations.
« Create indices.
« Modify schemes.
2. Interactive data manipulation language (DML) - a query language based on both
relational algebra and tuple relational calculus, plus commands to insert, delete and
modify tuples.

Chapter 03 — Relational Language-SQL 57

3. View Definition - commands for defining views
4. Authorization - specifying access rights to relations and views.
5. Integrity - a limited form of integrity checking.
6. Transaction control - specifying beginning and end of transactions.
7. Embedded data manipulation language - for use within programming languages like C,
PL/1, Cobol, Pascal, etc
We will only look at basic DDL, views and the DML. The relation schemes for the banking

example used throughout the textbook are:

*Branch-scheme= (bname, bcity, assets)

Figure 4.1 the Branch relation

branch-name | branch-city assets
Brighton Brooklyn 7100000
Downtown Brooklyn 9000000
Mianus Horseneck 400000
North Town Rye 3700000
Perryridge Horseneck 1700000
Pownal Bennington 300000
Redwood Palo Alto 2100000
Round Hill Horseneck 8000000

+ Customer-scheme = (cname, street, ccity)

Figure 4.2 the Customer relation

customer-name | customer-streg| customer-city
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams Princeton

Nassau o

Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill | Woodside
Brooks Senator Brooklyn
Green Walnut Stamford

58 Chapter 03 — Relational Language-SQL

« Depositor-scheme = (cname, account)

Figure 4.3 the Depositor relation

customer-name | account-number
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

Account-scheme = (account, bname, balance)

Figure 4.4 the Account relation

account-number| branch-name | balance
A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350

Loan-scheme = (loan, bname, amount)

Figure 4.5 the Loan relation

Loan branch-name | Amount
L-11 Round Hill 900

L-14 Downtown 1500
L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
L-93 Mianus 500

/
A

@

Chapter 03 — Relational Language-SQL 59

+ Borrower-scheme = (cname, loan)

Figure 4.6 the Borrower relation

customer-name | loan-number

Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Willia.ms L-17

3.2 DDL.: Data Definition Language

DDL or Data Definition Language actually consists of the SQL commands that can be used
to define the database schema. In a SQL database, a schema is a list of logical structures
of data. Attribute is or the conjunction of a column. Integrity Constraints are the protocols
that a table's data columns must follow. Domain integrity constraint contains a certain set
of rules or conditions to restrict the kind of attributes or values a column can hold in the
database table. Referential Integrity is a constraint in the database that enforces the
relationship between two tables Domain is value of attribute. Domain have type char(n)
(or character(n)): fixed-length character string, with user-specified length. varchar(n) (or
character varying): variable-length character string, with user-specified maximum length.
int or integer: an integer (length is machine-dependent). MySQL primary key is a single
or combination of the field, which is used to identify each record in a table uniquely.

The SQL DDL (Data Definition Language) allows specification of not only a set of
relations, but also the following information for each relation:

« The schema for each relation.

« The domain of values associated with each attribute.

« Integrity constraints.

« The set of indices for each relation.

» Security and authorization information.

 Physical storage structure on disk.

60 Chapter 03 — Relational Language-SQL

3.2.1 Schema Definition in SQL
An SQL relation is defined by:

CREATE TABLER (A1D1, A2 D2, ... , AnDn,
INTETRITY-CONSTRAINTY, ...
INTETRITY-CONSTRAINTN)

where R is the relation name, Ai is the name of an attribute, and Di is the domain of

that attribute.

The allowed integrity-constraints include
PRIMARY KEY (A1, A2, ..., An)
CHECK(P)

e.g.,

CREATE TABLE BRANCH (BNAME CHAR(I 5) NOT NULL
BCITY CHAR(30)
ASSETS INTEGER
PRIMARY KEY (BNAME)
CHECK (ASSETS>=0))

The values of primary key must be ‘not null’ and ‘unique’. SQL-92
considers not null in PRIMARY KEY specification is redundant but SQL-89
requires to define it explicitly.

Check creates type checking functionality which could be quite useful.
e.g., CREATE TABLE STUDENT (NAME CHAR(15) NOT NULL
STUDENT-ID CHAR(10) NOT NULL
DEGREE-LEVEL CHAR(I 5) NOT NULL
CHECK (DEGREE-LEVEL IN (‘BACHELORS', 'MASTERS',
'DOCTORATE")))
Some checking (such as foreign-key constraints) could be costly,
e.g., CHECK (BNAME IN (SELECT BNAME FROM BRANCH))

3.2.2 Integrity Constraints

Integrity constraints provide a way of ensuring that changes made to the database by
authorized users do not result in a loss of data consistency. An integrity constraint can be
any arbitrary predicate applied to the database. They may be costly to evaluate, so we will

only consider integrity constraints that can be tested with minimal overhead.

Chapter 03 — Relational Language-SQL 61

An addition to the original standard allows specification of primary and candidate keys
and foreign keys as part of the CREATE TABLE command:
- PRIMARY KEY clause includes a list of attributes forming the primary key.
- UNIQUE KEY clause includes a list of attributes forming a candidate key.
FOREIGN KEY clause includes a list of attributes forming the foreign key, and the name

of the relation referenced by the foreign key.

Domain Integrity Constraints
A domain of possible values should be associated with every attribute. These domain
constraints are the most basic form of integrity constraint. They are easy to test for when

data is entered.

Domain types
- Attributes may have the same domain, e.g. cname and employee-name.
- Itis not as clear whether bname and cname domains ought to be distinct.
- At the implementation level, they are both character strings.
- At the conceptual level, we do not expect customers to have the same names as branches,
in general.
- Strong typing of domains allows us to test for values inserted, and whether queries make
sense.
- Newer systems, particularly object-oriented database systems, offer a rich set of domain
types that can be extended easily.

The CHECK clause in SQL-92 permits domains to be restricted in powerful ways that
most programming language type systems do not permit. The CHECK clause permits
schema designer to specify a predicate that must be satisfied by any value assigned to a

variable whose type is the domain.
e.g.,
CREATE DOMAIN HOURLY-WAGE NUMERIC(5, 2)
CONSTRAINT WAGE-VALUE-TEST CHECK (VALUE >=4.00)

Note that 'CONSTRAINT WAGE-VALUE-TEST’ is optional (to give a name to the

test to signal which constraint is violated).

62 Chapter 03 — Relational Language-SQL

CREATE DOMAIN ACCOUNT-NUMBER CHAR(10)
CONSTRAINT ACCOUNT-NUMBER-NULL-TEST
CHECK(VALUE NOT NULL)

CREATE DOMAIN ACCOUNT-TYPE CHAR(10)
CONSTRAINT ACCOUNT-TYPE-TEST
CHECK(VALUE IN (‘Checking’, 'Saving’))

Referential Integrity Constraint
Often we wish to ensure that a value appearing in a relation for a given set of attributes
also appears for another set of attributes in another relation. This is called referential
integrity.
e.g.,
CREATE TABLE CUSTOMER (CNAME CHAR(20) NOT NULL,
STREET CHAR(30),

CITY CHAR(30),
PRIMARY KEY (CNAME))

CREATE TABLE BRANCH (BNAME CHAR(15) NOT NULL,
BCITY CHAR(30),
ASSETS INTEGER,
PRIMARY KEY (BNAME),

CHECK (ASSETS > = 0))

CREATE TABLE ACCOUNT (ACCOUNT# CHAR(10) NOT NULL ,
BNAME CHAR(I5),
BALANCE INTEGER,

PRIMARY KEY (ACCOUNT#),
FOREIGN KEY (BNAME) REFERENCES BRANCH,
CHECK (BALANCE>=0))

Chapter 03 — Relational Language-SQL 63

CREATE TABLE DEPOSITOR (CNAME CHAR(20) NOT NULL,
ACCOUNT# CHAR(10) NOT NULL,
PRIMARY KEY (CNAME, ACCOUNT#),

FOREIGN KEY (CNAME) REFERENCES CUSTOMER,
FOREIGN KEY (ACCOUNT#) REFERENCES ACCOUNT)

Notes on foreign keys: A short form to declare a single column is a foreign key.

BNAME CHAR(15) REFERENCES BRANCH
When a referential integrity constraint is violated, the normal procedure is to reject the
action. But a FOREIGN KEY clause in SQL-92 can specify steps to be taken to change
the tuples in the referenced relation to restore the constraint.
e.qg.,
CREATE TABLE ACCOUNT
FOREIGN KEY (BNAME) REFERENCES BRANCH ,
ON DELETE CASCADE
ON INSERT CASCADE ,

If a delete of a tuple in Branch results in the preceding referential integrity constraints
being violated, the delete is not rejected, but the delete ‘cascade ' to the Account relation,
deleting the tuple that refers to the Branch that was deleted. Update will be cascaded to the

new value of the Branch!

SQL-92 also allows the FOREIGN KEY clause to specify actions other than cascade,
such as setting the referencing field to NULL, or to a default value, if the constraint is
violated.

If there is a chain of foreign key dependencies across multiple relations, a deletion or
update at one end of the chain can propagate across the entire chain. If a cascading update
or delete causes a constraint violation that cannot be handled by a further cascading
operation, the system aborts the transaction and all the changes caused by the transaction
and its cascading actions are undone.

Given and complexity and arbitrary nature of the way constraints in SQL behave with
NULL values, it is the best to ensure that all columns of UNIQUE and FOREIGN KEY
specifications are declared to be NONNULL.

64 Chapter 03 — Relational Language-SQL

3.2.3 Domain Types
The SQL-92 standard supports a variety of built-in domain types:
* CHAR (N) (or CHARACTER (N)): fixed-length character string, with user- specified
length.
* VARCHAR (N) (or CHARACTER VARYING): variable-length character string,
* INT or INTEGER: an integer (length is machine-dependent).
* SMALLINT: a small integer (length is machine-dependent).
* NUMERIC (P, D): a fixed-point number with user-specified precision, consists of P digits
(plus a sign) and D of P digits are to the right of the decimal point.

e.g., NUMERIC (3, 1) allows 44.5 to be stored exactly but not 444.5.
« REAL or DOUBLE PRECISION: floating-point or double-precision floating-point
numbers, with machine-dependent precision.
* FLOAT (N): floating-point, with user-specified precision of at least N digits .
* DATE: a calendar date, containing four digit year, month, and day of the month.
* TIME: the time of the day in hours, minutes, and seconds.

SQL-92 allows arithmetic and comparison operations on various numeric domains,
including, INTERVAL and cast (type coercion) such as transforming between
SMALLINT and INT. It considers strings with different length are compatible types as

well.

SQL-92 allows create domain statement,

e.g.,
CREATE DOMAIN PERSON-NAME CHAR(20)

3.3 Views

views is a virtual table based on the result-set of an SQL statement. index is an on-disk
structure associated with a table or view that speeds retrieval of rows from the table or

view.

3.3.1 View Definition
We have assumed up to now that the relations we are given are the actual relations stored
in the database. For security and convenience reasons, we may wish to create a

personalized collection of relations for a user.

Chapter 03 — Relational Language-SQL 65

We use the term view to refer to any relation, not part of the conceptual model that is
made visible to the user as a "virtual relation™”. As relations may be modified by deletions,
insertions and updates, it is generally not possible to store views. Views must then be
recomputed for each query referring to them.

A view is defined using the CREATE VIEW command:

CREATE VIEW V AS <query expression>
where <query expression > is any legal query expression.
The view created is given the name V.

To create a view which contains all customers of all branches and their customers:

CREATE VIEW ALL-CUSTOMER AS
(SELECT BNAME, CNAME FROM DEPOSITOR, ACCOUNT
WHERE DEPOSTOR.ACCOUNT# = ACCOUNT.ACCOUNT#)
UNION
(SELECT BNAME, CNAME FROM BORROWER, LOAN
WHERE BORROWER.LOAN#= LOAN.LOAN#)

Having defined a view, we can now use it to refer to the virtual relation it creates. View
names can appear anywhere a relation name can.
e.g., We can now find all customers of the SFU branch by writing
SELECT CNAME FROM ALL-CUSTOMER WHERE BNAME=" SFU'

3.3.2 Updates Through Views and Null VValues

Updates, insertions and deletions using views can cause problems. The modifications on a
view must be transformed to modifications of the actual relations in the conceptual model
of the database. The view update anomaly exists also in SQL. An example will illustrate:
consider a clerk who needs to see all information in the loan relation except amount.

Let the view Branch-loan be given to the clerk:

CREATE VIEW BRANCH-LOAN AS (SELECT BNAME, LOAN#
FROM LOAN)

66 Chapter 03 — Relational Language-SQL

Since SQL allows a view name to appear anywhere a relation name may appear, the clerk

can write:

INSERT INTO BRANCH-LOAN VALUES ('SFU', 'L-307")

This insertion is represented by an insertion into the actual relation LOAN, from which
the view is constructed. However, we have no value for amount. This insertion results in
‘SFU', 'L-307', NULL) being inserted into the LOAN relation. The symbol NULL says
the value is unknown or does not exist.

As we saw, when a view is defined in terms of several relations, serious problems can
result. As a result, many SQL-based systems impose the constraint that a modification is
permitted through a view only if the view in question is defined in terms of one relation in

the database.

3.3.3 Index Definition in SQL

Some SQL implementations include data definition commands to create and drop indices.
The SQL commands are
An index is created by
create index <index -name>

on r (<attribute-list>)

The attribute list is the list of attributes in relation r that form the search key for the

index.

.e.g., to create an index on bname for the branch relation:
create index b-index

on branch (bname)

If the search key is a candidate key, we add the word UNIQUE to the definition:
create unique index b-index
on branch (bname)
« If bname is not a candidate key, an error message will appear.

« If the index creation succeeds, any attempt to insert a tuple violating this requirement will

Chapter 03 — Relational Language-SQL 67

fail.
« The UNIQUE keyword is redundant if primary keys have been defined with
integrity constraints already.

To remove an index, the command is

drop index <index-name>

3.4 DML: Data Modification
ya

€ Interactive data manipulation language (DML) a query language based on both relational
algebra and tuple relational calculus, plus commands to insert, delete and modify tuples.
Data Modification (The INSERT, UPDATE, DELETE, SELECT and MERGE) statement
are collectively referred to as DML (Data Manipulation Language) statements. Insert data
into a relation, we either specify a tuple, or write a query whose result is the set of tuples
to be inserted. Attribute values for inserted tuples must be members of the attribute's
domain .Updating allows us to change some values in a tuple without necessarily changing
all. Deletion is expressed in much the same way as a query. Instead of displaying, the
selected tuples are removed from the database. We can only delete whole tuples. Data
retrieval means obtaining data from a Database Management System (DBMS) such as
ODBMS. Basic structure of an SQL expression consist of SELECT, FROM, and Where
clause. The Rename Operation is mechanism to rename both relations and attributes.
Tuple variable can be used in SQL, and are defined in the FROM clause. String is pattern
matching using the operator LIKE. Patterns are case sensitive. Ordering the Display of
Tuples. In SQL allow the user to control the order in which tuples are displayed (ORDER,
DESC, ASC).Duplicate Tuples we use the DISTINCT Keyword. The SELECT DISTINCT
statement is used to return only distinct (different) values. SQL has the set operations
UNION, INTERSECT, EXCEPT. Aggregate function performs a calculation on a set of
values, and returns a single value. SQL can then compute (average, minimum, maximum,
total, number).Null value is a field with a NULL value is a field with no value. Netsted
Subqueies is a SELECT query embedded within the WHERE or HAVING clause of another
SQL query. We use the IN and NOT IN operations for set membership. To set compare set
in terms of inequalities. The EXISTS operator is used to test for the existence of any record

in a subquery. SQL-92 allows a subquery expression to be used in the from clause.Joined

68 Chapter 03 — Relational Language-SQL

Relations a logical connection that represents the relationship between two Cis. Join types:
INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN).

3.4.1 Insert
To insert data into a relation, we either specify a tuple, or write a query whose result is the
set of tuples to be inserted. Attribute values for inserted tuples must be members of the
attribute's domain.
e.g.,
To insert a tuple for Smith who has $1200 in account A-9372 at the SFU branch.
INSERT INTO ACCOUNT VALUES ('SFU', 'A-9372', 1200)

To provide each loan that the customer has in the ‘SFU’ branch with a $200 savings

account.

INSERT INTO ACCOUNT (SELECT BNAME, LOAN#, 200
FROM LOAN
WHERE BNAME='SFU")

Here, we use a SELECT to specify a set of tuples.
It is important that we evaluate the SELECT statement fully before carrying out any
insertion. If some insertions were carried out even as the SELECT statement were being

evaluated, the insertion

INSERT INTO ACCOUNT (SELECT *
FROM ACCOUNT)

might insert an infinite number of tuples. Evaluating the select statement completely
before performing insertions avoids such problems.
It is possible for inserted tuples to be given values on only some attributes of the schema.
The remaining attributes are assigned a NULL value denoted by NULL. We can prohibit
the insertion of NULL values using the SQL DDL.

Chapter 03 — Relational Language-SQL 69

3.4.2 Update

Updating allows us to change some values in a tuple without necessarily changing all.

e.g.,
To increase all balances by 5 percent.

UPDATE ACCOUNT SET BALANCE=BALANCE*1.05

This statement is applied to every tuple in account.

To make two different rates of interest payment, depending on balance amount:

UPDATE ACCOUNT SET BALANCE=BALANCE * 1.06
WHERE BALANCE> 10000;

UPDATE ACCOUNT SET BALANCE=BALANCE * 1.05
WHERE BALANCE 10000

Note: in this example the order of the two operations is important.

In general, WHERE clause of UPDATE statement may contain any construct legal in
a WHERE clause of a SELECT statement (including nesting).

A nested SELECT within an UPDATE may reference the relation that is being updated.
As before, all tuples in the relation are first tested to see whether they should be updated,
and the updates are carried out afterwards.

For example, to pay 5% interest on account whose balance is greater than average, we
have

UPDATE ACCOUNT SET BALANCE=BALANCE * 1.05
WHERE BALANCE> SELECT AVG (BALANCE)
FROM ACCOUNT

3.4.3 Delete
Deletion is expressed in much the same way as a query. Instead of displaying, the selected

tuples are removed from the database. We can only delete whole tuples.

A deletion in SQL is of the form

70 Chapter 03 — Relational Language-SQL

DELETE FROM R WHERE P

Tuples in R for which P is true are deleted.

If the WHERE clause is omitted, all tuples are deleted. The request

DELETE FROM LOAN

deletes all tuples from the relation Loan.
Some more examples:

Delete all of Smith's account records.

DELETE FROM DEPOSITOR
WHERE CNAME="'Smith'

Delete all loans with loan numbers between 1300 and 1500.

DELETE FROM LOAN
WHERE LOAN# BETWEEN 1300 AND 1500

Delete all accounts at branches located in Surrey.

DELETE FROM ACCOUNT
WHERE BNAME IN (SELECT BNAME
FROM BRANCH
WHERE BCITY="Surrey’

We may only delete tuples from one relation at a time, but we may reference any
number of relations in a select-from-where clause embedded in the WHERE clause of a
DELETE.

However, if the DELETE request contains an embedded SELECT that references the
relation from which tuples are to be deleted, ambiguities may result.

For example, to delete the records of all accounts with balances below the average, we

might write

Chapter 03 — Relational Language-SQL 71

DELETE FROM ACCOUNT
WHERE BALANCE< (SELECT AVG(BALANCE) FROM ACCOUNT)

You can see that as we delete tuples from account, the average balance changes.

Solution: The DELETE statement first test each tuple in the relation Account to check
whether the account has a balance less than the average of the bank. Then all tuples that
fail the test are deleted. Perform all the tests (and mark the tuples to be deleted) before any
deletion then delete them en masse after the evaluations.

3.4.4 Select (Data Retrieval)
Basic structure of an SQL expression consists of SELECT, FROM and WHERE clauses:

» SELECT clause lists attributes to be copied - corresponds to relational algebra project

(ID-

FROM clause corresponds to Cartesian product(X) lists relations to be used.

* WHERE clause corresponds to selection predicate (o) in relational algebra.

Typical query has the form

SELECT Ay, Ao,, An
FROM R4y, Ry,, Rm
WHERE P

where each Ai represents an attribute, each Ri a relation, and P is a predicate.

This is equivalent to the relational algebra expression
[T1Al,A2, ..., An {c P (Rl X R2 X Rm)}
» If the WHERE clause is omitted, the predicate P is true.
» The list of attributes can be replaced with a * to select all.
» SQL forms the Cartesian product of the relations named, performs a selection using
the predicate, then projects the result onto the attributes named.
» Theresult of an SQL query is a relation.
» SQL may internally convert into more efficient expressions.

e.g., Find the names of all branches in the Account relation.

72 Chapter 03 — Relational Language-SQL

SELECT BNAME
FROM ACCOUNT

distinct vs. all: elimination or not elimination of duplicates.

Find the names of all branches in the Account relation.

SELECT DISTINCT BNAME
FROM ACCOUNT
By default, duplicates are not removed. We can state it explicitly using all.

SELECT ALL BNAME
FROM ACCOUNT

SELECT * means select all the attributes. Arithmetic operations can also be in the
selection list.

The FROM clause by itself defines a Cartesian product of the relations in the clause.
SQL does not have a natural join equivalent. However, natural join can be expressed in
terms of a Cartesian product, selection, and projection.

For the relational algebra expression
[T cname, 1oan# (Borrow oo Loan)
we can write in SQL,
SELECT DISTINCT CNAME, BORROWER.LOAN#
FROM BORROWER, LOAN

WHERE BORROWER.LOAN# = LOAN.LOAN#

More selections with join: "Find the names and loan numbers of all customers who have

a loan at the SFU branch,” we can write in SQL,

SELECT DISTINCT CNAME, BORROWER.LOAN#

Chapter 03 — Relational Language-SQL 73

FROM BORROWER, LOAN
WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME="SFU'
The predicates can be more complicated, and can involve
» Logical connectives such as ‘and, or, not’.
 Arithmetic expressions on constant or tuple values.
» The between operator for ranges of values.

e.g., Find account number of accounts with balances between $90,000 and $100,000.

SELECT ACCOUNT#
FROM ACCOUNT
WHERE BALANCE BETWEEN 90000 AND 100000

The Rename Operation
The rename operation is a mechanism to rename both relations and attributes.

AS clause can appear in both the SELECT and FROM clauses:
old-name AS new-name.
e.q.,
SELECT DISTINCT CNAME, BORROWER.LOAN# AS LOAN_ID
FROM BORROWER, LOAN
WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME="SFU'

Tuple Variables
Tuple variables can be used in SQL, and are defined in the FROM clause:

SELECT DISTINCT CNAME, T.LOAN#
FROM BORROWER AS S, LOAN AS T
WHERE S.LOAN# = T.LOAN#

Note: The keyword AS is optional here.
These variables can then be used throughout the expression. Think of it as being
something like the rename operator.

Finds the names of all branches that have assets greater than at least one branch

located in Burnaby.

74 Chapter 03 — Relational Language-SQL

SELECT DISTINCT T.BNAME
FROM BRANCH S, BRANCH T
WHERE S.BCITY="Burnaby 'and T.ASSETS > S.ASSETS
String Operation
The most commonly used operation on strings is pattern matching using the operator LIKE.
Patterns are case sensitive, e.g., 'Jim' does not match ‘jim'.

String matching operators % (any substring) and _ (underscore, matching any
character). E.g., ' _ _ %' matches any string with at least 3 characters. We can use NOT
LIKE for string mismatching.

e.g., Find all customers whose street includes the substring "Main".

SELECT CNAME
FROM CUSTOMER
WHERE STREET LIKE '%Main%'

Backslash overrides the special meaning of symbols. Use the keyword ESCAPE to
define the escape character. E.g., LIKE 'ab%tely\%\' ESCAPE '\' matches all the strings
beginning with "ab' followed by a sequence of characters and then 'tely' and then '%
\'.

SQL also permits a variety of functions on character strings, such as concatenating
(using '), extracting substrings, finding the length of strings, converting between upper

case and lower case, and so on.

Ordering the Display of Tuples

SQL allows the user to control the order in which tuples are displayed.

« ORDER by makes tuples appear in sorted order (ascending order by default).
» DESC specifies descending order.

» ASC specifies ascending order.

SELECT *
FROM LOAN
ORDER BY AMOUNT DESC, LOAN# ASC

Chapter 03 — Relational Language-SQL 75

Sorting can be costly, and should only be done when needed.

Set Operations

SQL has the set operations UNION(U), INTERSECT(N) and EXCEPT(-).

Find all customers having an account.

SELECT DISTINCT CNAME
FROM DEPOSITOR
UNION: Find all customers having a loan, an account, or both.
(SELECT CNAME
FROM DEPOSITOR)
UNION
(SELECT CNAME
FROM BORROWER)

INTERSECT: Find customers having a loan and an account.
(SELECT CNAME
FROM DEPOSITOR)
INTERSECT
(SELECT CNAME
FROM BORROWER)
EXCEPT: Find customers having an account, but not a loan.

(SELECT CNAME
FROM DEPOSITOR)
EXCEPT

(SELECT CNAME
FROM BORROWER)

Some additional details:
* UNION eliminates duplicates, being a set operation. If we want to retain duplicates, we
may use UNION ALL, similarly for INTERSECT and EXCEPT.
*Not all implementations of SQL have these set operations.
« EXCEPT in SQL-92 is called MINUS in SQL-86.

«It is possible to express these queries using other operations.

76 Chapter 03 — Relational Language-SQL

Aggregate Functions

In SQL we can compute functions on groups of tuples using the group by clause. Attributes
given are used to form groups with the same values. SQL can then compute
eaverage value -- AVG
eminimum value -- MIN
emaximum value -- MAX
«total sum of values -- SUM
enumber in group -- COUNT
These are called aggregate functions. They return a single value.

e.g., Find the average account balance at each branch.

SELECT BNAME, AVG (BALANCE)
FROM CCOUNT
GROUP BY BNAME

Find the number of depositors at each branch.

SELECT BNAME, COUNT (DISTINCT CNAME)
FROM ACCOUNT, DEPOSITOR

WHERE ACCOUNT.ACCOUNT#= DEPOSITOR.ACCOUNT#
GROUP BY BNAME

We use DISTINCT so that a person having more than one account will not be counted
more than once.

Find branches and their average balances where the average balance is more than
$1200.

SELECT BNAME, AVG (BALANCE)
FROM ACCOUNT

GROUP BY BNAME

HAVING AVG (BALANCE)> 1200

Chapter 03 — Relational Language-SQL 77

Predicates in the HAYING clause are applied after the formation of groups.

Find the average balance of each customer who lives in ‘“Vancouver’ and has at least

three accounts:

SELECT DEPOSITOR.CNAME, AVG (BALANCE)
FROM DEPOSITOR, ACCOUNT, CUSTOMER
WHERE DEPOSITOR.CNAME= CUSTOMER.CNAME and
ACCOUNT.ACCOUNT#= DEPOSITOR.ACCOUNT# and
CCITY='"VANCOUVER'
GROUP BY DEPOSITOR.CNAME
HAVING COUNT (DISTINCT ACCOUNT#) >=3

If a WHERE clause and a HAYING clause appear in the same query, the WHERE
clause predicate is applied first.
» Tuples satisfying WHERE clause are placed into groups by the GROUP BY clause.
« The HAVING clause is applied to each group.
» Groups satisfying the HAVING clause are used by the SELECT clause to generate the
result tuples.
« Ifno HAVING clause is present, the tuples satisfying the WHERE clause are treated as

a single group.

NULL Values
With insertions, we saw how NULL values might be needed if values were unknown.
Queries involving NULLSs pose problems.

If a value is not known, it cannot be compared or be used as part of an aggregate
function. All comparisons involving NULL are false by definition. However, we can use
the keyword NULL to test for NULL values:

SELECT DISTINCT LOAN#
FROM LOAN
WHERE AMOUNT IS NULL

78 Chapter 03 — Relational Language-SQL

All aggregate functions except COUNT ignore tuples with NULL values on the
argument attributes.

3.4.5 Netsted Subqueies

Set Membership

We use the IN and NOT IN operations for set membership.

SELECT DISTINCT CNAME
FROM BORROWER
WHERE CNAME IN (SELECT CNAME
FROM ACCOUNT
WHERE BNAME='SFU')

Note that we can write the same query several ways in SQL.

We can also test for more than one attribute:

SELECT DISTINCT CNAME
FROM BORROWER, LOAN
WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME ='SFU' and
(BNAME, CNAME) IN (SELECT BNAME, CNAME
FROM ACCOUNT, DEPOSITOR
WHERE DEPOSITOR.ACCOUNT# = ACCOUNT.ACCOUNT#)

This finds all customers who have a loan and an account at the ‘SFU’ branch in yet
another way. Finding all customers who have a loan but not an account, we can use the

NOT IN operation.

Set Comparison

To compare set elements in terms of inequalities, we can write

SELECT DISTINCT T.BNAME

Chapter 03 — Relational Language-SQL 79

FROM BRANCH T, BRANCH S
WHERE T.ASSETS > S.ASSETS
AND S.BCITY="BURNABY"

or we can write

SELECT BNAME
FROM BRANCH
WHERE ASSETS > SOME (SELECT ASSETS
FROM BRANCH
WHERE BCITY="BURNABY")
to find branches whose assets are greater than some branch in Burnaby.
We can use any of the equality or inequality operators with SOME. If we change >

SOME to >ALL, we find branches whose assets are greater than all branches in Burnaby.

e.g., Find branches with the highest average balance. We cannot compose aggregate
functions in SQL, e.g. we cannot do MAX(AVG(...)). Instead, we find the branches for

which average balance is greater than or equal to all average balances:

SELECT BNAME
FROM ACCOUNT
GROUP BY BNAME
HAVING AVG (BALANCE) >= ALL (SELECT AVG (BALANCE)
FROM ACCOUNT
GROUP BY BNAME)

Test for Empty Relations
The EXISTS construct returns true if the argument subquery is nonempty. Find all

customers who have a loan and an account at the bank.
SELECT CNAME
FROM BORROWER
WHERE EXISTS (SELECT *
FROM DEPOSITOR
WHERE DEPOSITOR.CNAME =
BORROWER.CNAME)

80 Chapter 03 — Relational Language-SQL

Test for the Absence of Duplicate Tuples
The UNIQUE construct returns true if the argument subquery contains no duplicate tuples.

Find all customers who have only one account at the ‘SFU” branch.

SELECT T.CNAME
FROM DEPOSITORAS T
WHERE UNIQUE (SELECT R.CNAME
FROM ACCOUNT, DEPOSITOR AS R
WHERE T.CNAME = R.CNAME and
R.ACCOUNT# = ACCOUNT.ACCOUNT#
and ACCOUNT.BNAME ="'SFU")

3.4.6 Joined Relations
Each variant of the join operations in SQL-92 consists of a join type and a join condition.
1.Join types: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL
OUTER JOIN
The keyword INNER and OUTER are optional since the rest of the join type enables

us to deduce whether the join is an inner join or an outer join.

SQL-92 also provides two other join types:
- CROSS JOIN: an inner join without a join condition.
UNION JOIN: a full outer join on the 'false’ condition, i.e., where the inner join is

empty.

2. Join conditions: NATURAL ON predicate USING (A1, Az,, AN)
The use of join condition is mandatory for outer joins, but is optional for inner joins (if it
is omitted, a Cartesian product results).

Two given relations: Loan and Borrower.

Chapter 03 — Relational Language-SQL 81

Figure 3.7 the Loan and Borrower relations

bname Loan# | amount cname [loan#
Downtown | L-170 3000 Jones |L-170
Redwood | L-230 4000 Smith L-230
Perryridge | L-260 1700 Hayes [L-155
Inner join:

LOAN INNER JOIN BORROWER ON LOAN.LOAN# = BORROWER.LOAN#

Notice that the loan# will appear twice in the inner joined relation.

Figure 3.8 the result of Loan inner join Borrower

bname loan# Jamount [Cname [loan#
Downtown |L-170 L-[3000 Jones 1-170
Redwood (230 4000 Smith 1-230

Left outer join:
LOAN LEFT OUTER JOIN BORROWER ON LOAN.LOAN# =
BORROWER.LOAN#

Figure 3.9 the result of Loan left outer join Borrower

bname loan# | amount |cname | loan#

Downtown | L-170 3000 Jones | L-170

Redwood L-230 4000 Smith | L-230
Perryridge | L-280 1700 null null

Natural inner join:
LOAN NATURAL INNER JOIN BORROWER

Figure 3.10 the result of Loan natural inner join Borrower

bname loan#t amount | cname
Downtown ([L-170 3000 Jones
Redwood |[L-230 4000 Smith

Natural full outer join :
LOAN NATURAL FULL OUTER JOIN BORROWER USING(LOAN#)

82 Chapter 03 — Relational Language-SQL

Figure 3.11 the result of Loan natural full outer join Borrower using (loan#)

bname loan# | amount chame
Downtown | L-170 3000 Jones
Redwood L-230 4000 Smith
Perryridgc | L-260 1700 null
null L-155 null Hayes

Find all customers who have either an account or a loan (but not both) at the bank.
SELECT CNAME
FROM (NATURAL FULL OUTER JOIN BORROWER)
WHERE ACCOUNT# IS NULL OR LOAN# IS NULL

3.5 Embedded SQL

Other SQL Features is special language to assist application programmers in creating
temples on the screen for a user interface.

SQL provides a powerful declarative query language. However, access to a database from
a general-purpose programming language is required because,

» SQL is not as powerful as a general-purpose programming language. There are queries
that cannot be expressed in SQL, but can be programmed in C, Java, etc.

» Nondeclarative actions - such as printing a report, interacting with a user, or sending
the result to a GUI - cannot be done from within SQL.

The SQL standard defines embedding of SQL as embedded SQL and the language in which
SQL queries are embedded is referred as host language. The result of the query is made
available to the program one tuple (record) at a time.

To identify embedded SQL requests to the preprocessor, we use EXEC SQL statement:

EXEC SQL embedded _SQL_statement END-EXEC
Embedded SQL statements: DEC LARE CURSOR, OPEN, and FETCH statements.

EXEC SQL
DECLARE C CURSOR FOR
SELECT CNAME, CCITY
FROM DEPOSIT, CUSTOMER

Chapter 03 — Relational Language-SQL 83

WHERE DEPOSIT.CNAME = CUSTOMER.CNAME
and DEPOSIT.BALANCE> :AMOUNT
END-EXEC

where: AMOUNT is a host-language variable.

EXEC SQL
OPEN C
END-EXEC

This statement causes the DB system to execute the query and to save the results within a
temporary relation.
A series of FETCH statement are executed to make tuples of the results available to the

program.

EXEC SQL
FETCH C INTO :CN, :CC
END-EXEC

The program can then manipulate the variable: CN and :cc using the features of the host
programming language.

A single FETCH request returns only one tuple. We need to use a WHILE loop (or
equivalent) to process each tuple of the result until no further tuples (when a variable in
the SQLCA is set).

We need to use close statement to tell the DB system to delete the temporary relation that

held the result of the query.

EXEC SQL
CLOSEC
END-EXEC

Embedded SQL can execute any valid UPDATE, INSERT, or DELETE statements.

Dynamic SQL component allows programs to construct and submit SQL queries at run

84 Chapter 03 — Relational Language-SQL

time. SQL-92 also contains a module language, while allows procedures to be defined in
SQL.

Chapter 03 — Relational Language-SQL 85

BE Summary

e SQL is the most popular computer language used to create, modify, retrieve and
manipulate data from relational database management systems. According to
history, during 1970s a group at IBM’s San Jose research center developed a
database and then Oracle to date. SQL is standardized by ANSI and 1SO. The
programming language is integrated with SQL or use SQL commands to use in
database.As time goes on, SQL is more developed and more useful.

e DDL or Data Definition Language actually consists of the SQL commands that
can be used to define the database schema.

e Ina SQL database, a schema is a list of logical structures of data. Attribute is
or the conjunction of a column.

e Integrity Constraints are the protocols that a table's data columns must follow.

e Domain integrity constraint contains a certain set of rules or conditions to
restrict the kind of attributes or values a column can hold in the database table.

e Referential Integrity is a constraint in the database that enforces the relationship
between two tables.

e Domain is value of attribute. Domain have type char(n) (or character(n)): fixed-
length character string, with user-specified length. varchar(n) (or character
varying): variable-length character string, with user-specified maximum length. int
or integer: an integer (length is machine-dependent). MySQL primary key is a single
or combination of the field, which is used to identify each record in a table uniquely.
e views is a virtual table based on the result-set of an SQL statement.

e index is an on-disk structure associated with a table or view that speeds retrieval
of rows from the table or view.

e Interactive data manipulation language (DML) a query language based on both
relational algebra and tuple relational calculus, plus commands to insert, delete and

modify tuples.

86 Chapter 03 — Relational Language-SQL

e Data Modification (The INSERT, UPDATE, DELETE, SELECT and
MERGE) statement are collectively referred to as DML (Data Manipulation
Language) statements.

e Insert data into a relation, we either specify a tuple, or write a query whose
result is the set of tuples to be inserted. Attribute values for inserted tuples must be
members of the attribute's domain.

e Updating allows us to change some values in a tuple without necessarily
changing all.

e Deletion is expressed in much the same way as a query. Instead of displaying,
the selected tuples are removed from the database. We can only delete whole tuples.
e Data retrieval means obtaining data from a Database Management System
(DBMS) such as ODBMS. Basic structure of an SQL expression consist of SELECT,
FROM, and Where clause.

e The Rename Operation is mechanism to rename both relations and attributes.

e Tuple variable can be used in SQL, and are defined in the FROM clause.

e String is pattern matching using the operator LIKE. Patterns are case sensitive.
e Ordering the Display of Tuples. In SQL allow the user to control the order in
which tuples are displayed (ORDER, DESC, ASC).

e Duplicate Tuples we use the DISTINCT Keyword. The SELECT DISTINCT
statement is used to return only distinct (different) values.

e SQL has the set operations UNION, INTERSECT, EXCEPT.

e Aggregate function performs a calculation on a set of values, and returns a
single value. SQL can then compute (average, minimum, maximum, total, number).

e Null value is a field with a NULL value is a field with no value.

Chapter 03 — Relational Language-SQL 87

e Netsted Subqueies is a SELECT query embedded within the WHERE or HAVING
clause of another SQL query.

e We use the IN and NOT IN operations for set membership.

e To set compare set in terms of inequalities. The EXISTS operator is used to test
for the existence of any record in a subquery. SQL-92 allows a subquery expression
to be used in the from clause.

e Joined Relations a logical connection that represents the relationship between
two Cis. Join types: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL
OUTER JOIN).

e Other SQL Features is special language to assist application programmers in

creating temples on the screen for a user interface.

,‘,. Questions

What is DDL: Data Definition Language?

What are type of constraint in SQL?

What is Domain type? Please detail each section of the Domain Type?
What is view?

What is DML: Data Modification?

What is Insert? Please give command example?

What is Update? Please give command example?

What is Delete? Please give command example?

© © N o o £ w D B

What is Select (Data Retrieval)? Please give command example?

[EEN
o

. How do you order a displayed of tuples?

[EEN
[EEN

. What is aggregate functions in SQL with example?

[EN
N

. What are operations for use in set membership?

[BN
w

. What are comparison operator used in conditions that compares one
expression with another?

14. What is Jointed Relation?

15. What are the Type of Join in SQL?

16. What is embedded SQL? Please give example?

88 Chapter 03 — Relational Language-SQL

© N o g &~ w NP

C= Exercises

What is the syntax to create a database in SQL?
What is the syntax to create a Table in SQL?

What is the syntax for insert in SQL?

What is the syntax of update in SQL?

What is the syntax of Select command in SQL?
What is the syntax of the aggregate function in SQL?
What is the syntax of ORDER BY in SQL?

What is the syntax of join in SQL?

Chapter 04
Entity-Relationship Model

Objective

To understand Entity-Relationship model

To understand Entity and Entity Set

To explain Relationship and Relationship Set
To explain Keys

To explain E-R Diagram

To understand Reducing E-R Diagrams to Tables

In this chapter, you will learn:

4.1 Overview
4.2 Entity and Entity Set
4.3 Relationship and Relationship Set
4.4 Keys
4.5 E-R Diagram
4.6 Reducing E-R Diagrams to Tables
4.6.1 Strong Entity sets
4.6.2 Relationship sets
4.6.3 Generalization

Chapter 04 — Entity-Relationship Model 91

4.1 Overview

Data modeling is the process of analyzing and defining all the different data your business
collects and produces, as well as the relationships between those bits of data. The data
modeling the entity-relational mode is intended primarily for the DB design and the entity-
relationship model or entity-relationship diagram (ERD) is a data model or diagram for
high-level description of conceptual data models.

The entity-relationship model or entity-relationship diagram (ERD) is a data model or
diagram for high-level descriptions of conceptual data models, and it provides a graphical
notation for representing such data models in the form of entity relationship diagrams.
Such models are typically used in the first stage of information-system design; they are
used, for example, to describe information needs and/or the type of information that is to
be stored in the database during the requirements analysis.

The data modeling technique, however, can be used to describe any ontology (i.e.an
overview and classifications of used terms and their relationships) for a certain universe of
discourse (i.e. area of interest). In the case of the design of an information system that is
based on a database, the conceptual data model is, at a later stage (usually called logical
design), mapped to a logical data model, such as the relational model; this in tum is mapped
to a physical model during physical design. Note that sometimes, both of these phases are
referred to as "physical design". The E-R (entity-relationship) data model views the real
world as a set of basic objects (entities) and relationships among these objects.

The entity-relationship mode is intended primarily for the DB design process by allowing
the specification of an enterprise scheme. This represents the overall logical structure of
the DB.

4.2 Entity and Entity Set

An entity is a real-world thing or a real-world object which is distinguishable from other
objects in the real world. An entity set is a set of entities of the same type. Attribute is a
function which maps an entity set into a domain. The domain is the set of permitted values.
An entity is an object that exists and is distinguishable from other objects. For instance,
"John Harris with S.S.N. (Social Security Number) 890-12-3456" is an entity, as he can be
uniquely identified as one particular person in the universe. An entity may be concrete (a

person or a book, for example) or abstract (like a holiday or a concept).

92 Chapter 04 — Entity-Relationship Model

An entity set is a set of entities of the same type (e.g., all persons having an account at a
bank). Entity sets need not be disjoint. For example, the entity set “"employee” (all
employees of a bank) and the entity set "customer™ (all customers of the bank) may have

members in common. Figure 4.1 shows two entity sets, “customer” and "loan".

Figure 4.1 two entity sets, "customer™ and "loan™

321-12-3123 [Jones [Main | Harrison L-17 | 1000
019-28-3746 | Smith [North | Rye L-23 | 2000
677-89-9011 | Hayes [Main | Harrison L-15 | 1500
555-55-5555 | Jackson [Dupont [Woodside L-14 | 1500
244-66-8800 [Curry [North [Rye L-19 | 400
963-96-3963 [Williams [Nassau | Princeton L-11 | 900
335-57-7991 | Adams [Spring [Pitlsfield L-16 | 1300
customer loan

Attributes

An entity is represented by a set of attributes, e.g. name, S.S.N., street, city for "customer”
entity. The domain of the attribute is the set of permitted values (e.g. the telephone number
must be seven positive integers).

Formally, an attribute is a function which maps an entity set into a domain. Every entity
is described by a set of (attribute, data value) pairs. There is one pair for each attribute of
the entity set. E.g. a particular "customer" entity is described by the set {(name, Harris),
(S.S.N., 890-123-456), (street, North), (city, Georgetown)}.

An analogy can be made with the programming language notion of type definition. The
concept of an entity set corresponds to the programming language type definition. A
variable of a given type has a particular value at a point in time. Thus, a programming
language variable corresponds to an entity in the E-R model.

For example, five entity sets and their attributes are introduced below:

« Branch, the set of all branches of a particular bank. Each branch is described by the
attributes branch-name, branch-city and assets.

« Customer, the set of all people having an account at the bank. Attributes are customer-
name, S.S.N., street and customer-city.

« Employee, with attributes employee-name and phone-number.

Chapter 04 — Entity-Relationship Model 93

» Account, the set of all accounts created and maintained in the bank. Attributes are account
-number and balance.
» Transaction, the set of all account transactions executed in the bank. Attributes are

transaction-number, date and amount.

4.3 Relationship and Relationship Set

A relationship is an association among several entities. A relationship set is a collection
of relationships of the same type, and an entity set is a collection of entities of the same
type. The terms superkey, candidate key, and primary key apply to entity and relation-ship
sets as they do for relation schemas. ldentifying the primary key of a relationship set
requires some care, since it is composed of attributes from one or more of the related entity
sets. Mapping cardinalities express the number of entities to which another entity can be
associated via a relationship set. There are 4 mapping cardinality must be one of: one-to-
one.one-to-many, many-to-one and many-to-many.
A relationship is an association between several entities. A relationship set is a set of
relationships of the same type.
Formally it is a mathematical relation on > 2 (possibly non-distinct) sets. If E1, Eo,..., En
are entity sets, then a relationship set R is a subset of

{(e1, €2,...,en)| €1 EE1, €2€ E2, ..., €n € En}

, Where (ez, ez, ... ,en) is a relationship.
For example, consider the two entity sets customer and loan shown in Fig. 4.1. We define
the relationship CustLoan to denote the association between customers and their loans.

This is a binary relationship set shown in Figure 4.2.

Figure 4.2 a binary relationship set between customers and their loans

321-12-3123 [Jones | Main [Harrison L-17 [1000
019-28-3746 | Smith [North [Rye L-23 [2000
677-89-9011 | Hayes [Main | Harrison / L-15 | 1500
555-55-5555 | Jackson | Dupont | Woodside L-14 [1500
244-66-8800 | Curry | North [Rye L-19 [400
063-96-3963 | Williams | Nassau | Princeton ™~ L-11 | 900
335-57-7991 | Adams [Spring | Pitlsfield L-16 [1300
customer loan

94 Chapter 04 — Entity-Relationship Model

Going back to the formal definition, the relationship set CustLoan is a subset of all the
possible customer and account pairings. This is a binary relationship. Occasionally there

are relationships involving more than two entity sets.

Roles and Attributes
The role of an entity is the function it plays in a relationship. For example, the
relationship works-for could be ordered pairs of employee entities. The first employee
takes the role of manager, and the second one will take the role of worker.

A relationship may also have descriptive attributes. For example, date (last date of
account access) could be an attribute of the depositor relationship set between the customer
and account entity set shown in Figure 4.3.

Figure 2.3 the depositor relationship set

deposit(access-date)

customer(customer-name) account(account-number)
24 May 1996 A-101
Johnson =
3 June 1996 A-215
Smith 21 June 1996
1 A-102
Hayes | 10 June 1996
17 June 1996 L —+— A-305
Turner
28 May1996 L AD01
Jones [~ 28 May 1996
: 24 June 1996 L A222
Lindsay
23 May 1996 A-217

It is possible to define a set of entities and the relationships among them in a number of
different ways. The main difference is in how we deal with attributes.

Consider the entity set employee with attributes employee-name and phone- number.
We could argue that the phone be treated as an entity itself, with attributes phone-number
and location. Then we have two entity sets, and the relationship set EmpPhn defining
the association between employees and their phones. This new definition allows
employees to have several (or zero) phones. New definition may more accurately reflect
the real world.

Chapter 04 — Entity-Relationship Model 95

We cannot extend this argument easily to making employee-name an entity. The
question of what constitutes an entity and what constitutes an attribute depends
mainly on the structure of the real world situation being modeled, and the semantics
associated with the attribute in question.

An E-R scheme may define certain constraints to which the contents of a database must

conform: mapping cardinalities and existence dependencies.

Mapping cardinalities

Mapping cardinalities express the number of entities to which another entity can be
associated via a relationship. For binary relationship sets between entity sets A and B, the
mapping cardinality must be one of:

« one-to-one: An entity in A is associated with at most one entity in B, and an entity in B
is associated with at most one entity in A. (Figure 4.4 (a))

* one-to-many: An entity in A is associated with any number in B. An entity in B is
associated with at most one entity in A. (Figure 4.4(b))

« many-to-one: An entity in A is associated with at most one entity in B. An entity in B is
associated with any number in A. (Figure 4.5 (a))

» many-to-many: Entities in A and B are associated with any number from each other.
(Figure 4.5(b))

Figure 4.4 (a) one-to-one (b) one-to-many

A B
b1
e
a b3
as (o)
bs

(b)

96 Chapter 04 — Entity-Relationship Model

Figure 4.5 (a) many-to-one (b) many-to-many

ai

az

b1

as

as

as

(@)

b2

b3

A B

(b)

The appropriate mapping cardinality for a particular relationship set depends on the real

world being modeled. (Think about the CustLoan relationship in Figure 4.2.) Further,

mapping cardinalities affect the ER design.

For example, we can make access-date an attribute of account in Figure 4.4, instead of
a relationship attribute, 1 each account can have only one customer. l.e., the relationship
from account to customer is many to one, or equivalently, customer to account is one to

many as shown in Figure 4.6.

Figure 4.6 the relationship from account to customer

Johnson

Smith

Hayes

Turner

customer(customer-name)

account (account-number, access-date)

deposit

Jones

Lindsay

p

A-101 24 May 1996
L1 A-215 3 June 1996
A-102 10 June 1996
A-305 28 May1996
Ll A-201 17 June 1996
L1 A-222 24 June 1996
L A-217 23 May 1996

Chapter 04 — Entity-Relationship Model 97

Existence dependencies
Existence dependencies are that if the existence of entity X depends on the existence
of entity Y, then X is said to be existence dependent on Y. (Or we say that Y is the
dominant entity and X is the subordinate entity.)

For example, consider account and transaction entity sets, and a relationship log
between them. This is one-to-many from account to transaction. If an account entity is
deleted, its associated transaction entities must also be deleted. Thus account is dominant

and transaction is subordinate.
4.4 Keys

Key is an attribute or a set of attributes that help to uniquely identify a tuple (or row) in a
relation (or table) type of Key in DB: Primary Key, Super Key. Candidate Key, Alternate
Key, Foreign Key, Composite Key, Unique Key. The terms superkey, candidate key, and
primary key apply to entity and relationship sets as they do for relation schemas.
Identifying the primary key of a relationship set requires some care, since it is composed
of attributes from one or more of the related entity sets.

Differences between entities must be expressed in terms of attributes. A superkey is a set
of one or more attributes that, taken collectively, allow us to identify uniquely an entity in
the entity set. For example, in the entity set customer, customer-name and S.S.N. is a
superkey. Note that customer-name alone is not, as two customers could have the same
name.

A superkey may contain extraneous attributes, and we are often interested in the smallest
superkey. A superkey for which no subset is a superkey is called a candidate key. In the
example above, S.S.N. is a candidate key, as it is minimal, and uniquely identifies a
customer entity.

A primary key is a candidate key (there may be more than one) chosen by the DB designer
to identify entities in an entity set. An entity set that does not possess sufficient attributes
to form a primary key is called a weak entity set. One that does have a primary key is called
a strong entity set.

Primary keys for weak entity sets

For example, the entity set transaction has attributes transaction-number, date and amount.
Different transactions on different accounts could share the same number. These are not
sufficient to form a primary key (uniquely identify a transaction). Thus transaction is a

weak entity set.

98 Chapter 04 — Entity-Relationship Model

For a weak entity set to be meaningful, it must be part of a one-to-many relationship
set. This relationship set should have no descriptive attributes. (Why?) The idea of strong
and weak entity sets is related to the existence dependencies seen earlier.

Member of a strong entity set is a dominant entity. Member of a weak entity set is a
subordinate entity. A weak entity set does not have a primary key, but we need a means of
distinguishing among the entities. The discriminator of a weak entity set is a set of
attributes that allows this distinction to be made. The primary key of a weak entity set is
formed by taking the primary key of the strong entity set on which its existence depends
(see Mapping Constraints) plus its discriminator.

To illustrate: transaction is a weak entity. It is existence-dependent on account. The
primary key of account is account-number. Transaction-number distinguishes transaction
entities within the same account (and is thus the discriminator). So the primary key
for transaction would be (account-number, transaction-number).

Just Remember: the primary key of a weak entity is found by taking the primary key of
the strong entity on which it is existence-dependent, plus the discriminator of the weak
entity set.

Primary keys for relationship sets

The attributes of a relationship set are the attributes that comprise the primary keys of the
entity sets involved in the relationship set. For example, S.S.N. is the primary key of
customer, and account-number is the primary key of account. The attributes of the
relationship set CustAcct are then (account-number, S.S.N.).

This is enough information to enable us to relate an account to a person. If the
relationship has descriptive attributes, those are also included in its attribute set. For
example, we might add the attribute date to the above relationship set, signifying the date
of last access to an account by a particular customer. Note that this attribute cannot instead
be placed in either entity set as it relates to both a customer and an account, and the
relationship is many-to-many.

The primary key of a relationship set R depends on the mapping cardinality and the
presence of descriptive attributes. With no descriptive attributes:

1. many-to-many: all attributes in R.
2. one-to-many: primary key for the "many" entity.

3. one-to-one: primary key of either entity.

Chapter 04 — Entity-Relationship Model 99

Descriptive attributes may be added, depending on the mapping cardinality and the

semantics involved.
4.5 E-R Diagram

A database design specified by an E-R diagram can be represented by a collection of
relation schemas. For each entity set and for each relationship set in the database, there
is a unique relation schema that is assigned the name of the corresponding entity set or
relationship set. This forms the basis for deriving a relational database design from an E-
R diagram. E-R diagram basic components are: rectangles ellipses, diamonds and lines.
There are a number of conventions for entity-relationship diagrams (ERDs). The classical
notation is described in the remainder of this article, and mainly relates to conceptual
modeling. There are a range of notations more typically employed in logical and physical
database design, including information engineering, IDEF1x (ICAM DEFinition
Language) and dimensional modeling.

We can express the overall logical structure of a database graphically with an E- R diagram.
Its basic components are:

1. rectangles representing entity sets.

2. ellipses representing attributes.

3. diamonds representing relationship sets.

4. lines linking attributes to entity sets and entity sets to relationship sets. In the text,
lines may be directed (have an arrow on the end) to signify mapping cardinalities for
relationship sets.

The summaries of symbols used in E-R notation are shown in Figures 4.7, 4.8.

Figure 4.7 the summary of symbols

Entity @ Attribute
Weak Entity Multivalued
Attribute

—- -~

N
Relationship Set (A ' Derived Attribute

Identifying Total
Relationship E Participation
Set for Weak of Entity Set

Entity Set

Discriminating
Primary Key 9 Attribute of

Weak Entity Set

HOS[-

100 Chapter 04 — Entity-Relationship Model

Figure 4.8 the summary of symbols

Many to Many Many to One

Relationship Relationship
N One to One I.h £ Cardinality

Relationship Limits

role-name

ISA
E [Role Indicator v (Specialization or

Generalization)

Total Disjoint
Generalization Generalization

disjoint

Figure 4.9 shows an example with two entity sets and a relationship set. In this example,
the primary key of customer is customer-id, and the primary key of account is account-
number respectively. Go back and review mapping cardinalities. They express the number
of entities to which an entity can be associated via a relationship. The arrow positioning is
simple once you get it straight in your mind. Think of the arrow head as pointing to the
entity that "one" refers to. Thus, in this example, the cardinality of the relationship set
depositor is many-to-many.

Figure 4.9 an example with two entity sets and a relationship set

Customer-name) (Customer-street
Customer-id @
Customer deposit account

Other styles of E-R diagram

The text uses one particular style of diagram. Many variations exist. Some of the variations
we will see are:
 Diamonds being omitted - a link between entities indicates a relationship. (See
Figure 4.10)
- Less symbols, clearer picture.

- What happens with descriptive attributes?

Chapter 04 — Entity-Relationship Model 101

- In this case, we have to create an intersection entity to possess the attributes.
» Numbers instead of arrowheads indicating cardinality. (See Figure 4.10)

- Symbols, 1, n and m used.

-Eg.1tol,1ton,ntom.

- Easier to understand than arrowheads.

Figure 4.10 numbers instead of arrowheads indicating cardinality

E
Entity set E with Al
Attributes A1, A2, A3 A2
And primary key Al A3

Many to Many . R
Relationship
One to One 1 1 R
Relationship
Many to One * 1 R
Relationship

* A range of numbers indicating optionality of relationship. (See Figure 4.11)

- E.g (0,1) indicates minimum zero (optional), maximum 1.

- Can also use (0,n), (1,1) or (1 ,n).

- Typically used on near end of link - confusing at first, but gives more information.

- E.g. entity 1 (0, 1) -- (1,n) entity 2 indicates that entity 1 is related to between 0 and 1
occurrences of entity 2 (optional).

- Entity 2 is related to at least 1 and possibly many occurrences of entity 1
(mandatory).

Figure 4.11 optionality of relationship

customer-street
loan-number @
0.* 1.1
customer borrower loan

customer-name
customer-id

 Multivalued attributes may be indicated in some manner.

102 Chapter 04 — Entity-Relationship Model

- Means attribute can have more than one value, e.g. hobbies.

- Has to be normalized later on.
» Extended E-R diagrams allowing more details/constraints in the real world to be recorded.
(See Figures 4.12, 4,13)

- Composite attributes.

- Derived attributes.

- Subclasses and super classes.

- Generalization and specialization.

Figure 4.12 composite attributes

Composite name address

T N N

First-name middle-initial last-name Street city state postal-code
Component
Attributes
Street-number street-name apartment-number

Figure 4.13 multivalue and derived attributes

middle-initia
Street-number apartment-number

customer-id
customer

Phone-number

Roles in E-R Diagrams

The function that an entity plays in a relationship is called its role. Roles are normally
explicit and not specified. They are useful when the meaning of a relationship set needs
clarification. For example, the entity sets of a relationship may not be distinct. The
relationship works-for might be ordered pairs of employees (first is manager, second is
worker).

In the E-R diagram, this can be shown by labeling the lines connecting entities

(rectangles) to relationships (diamonds). (See figure 9.14).

Chapter 04 — Entity-Relationship Model 103

Figure 4.14 the meaning of a relationship

employee-name

employee-id telephone-number

manager

employee

worker

works-for

Weak Entity Sets in E-R Diagrams

A weak entity set is indicated by a doubly-outlined box. For example, the weak entity set

payment is dependent on the strong entity set loan via the relationship set loan-payment.

Figure 4.15 shows this example.

Figure 4.15 the weak entity set

loan-number
— <

laon laon-payment

payment-date

Ramentanby

payment-amount

|

Non-binary Relationships

Non-binary relationships can easily be represented. Figure 4.16 shows an E-R diagram

with a ternary relationship.

Figure 4.16 a ternary relationship

j

=

employee-id /@

employee .

branch-name

branch

104 Chapter 04 — Entity-Relationship Model

4.6 Reducing E-R Diagrams to Tables

Reduction of ER diagram to Table. The database can be represented using the notations,

and these notations can be reduced to a collection of tables.

A database conforming to an E-R diagram can be represented by a collection of tables. For
each entity set and relationship set, there is a unique table which is assigned the name of

the corresponding set. Each table has a number of columns with unique names. The E-R

diagram of Figure 4.17 is used as an example.
Figure 4.17 an E-R diagram for a bank

branch

loan-branch
customer-name

Customer-id loan-number

payment-number

payment-date

borrower

loan

customer

access-date

loan>
payment

balance

@ e account
employee :‘
account

Checking-account

Deposit-number

overdraft-amount

Chapter 04 — Entity-Relationship Model 105

4.6.1 Strong Entity sets

We use a table with one column for each attribute of the set. Each row in the table
corresponds to one entity of the entity set. For the entity set customer, see the table of
Figure 4.18.

Figure 4.18 the entity set — customer

customer-id | customer-name | customer-street | customer-city
019-28-3776 Smith North Rye
182-73-6091 Turner Putnam Stamford
192-83-7465 Johnson Alma Palo Alto
244-66-8800 Curry North Rye
321-12-3123 Jones Main Harrison
335-57-7991 Adams Spring Pittsfield
336-66-9999 Lindsay Park Pittsfield
677-89-9011 Hayes Main Harrison
963-96-3963 Williams Nassau Princeton
Weak Entity Sets

For a weak entity set, we add columns to the table corresponding to the primary key of the
strong entity set on which the weak set is dependent. For example, the weak entity set
payment has four attributes: loan-number, payment-number, payment-date and payment -
amount. The primary key of payment is {loan-number, payment -number}. This gives us
the table of Figure 4.19.

Figure 4.19 the weak entity set - payment

loan-number | payment-number | payment-date | payment-amount

L-11 53 7 June 2001 125
L-14 69 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135k
L-17 5 10 May 2001 50

L-17 6 7 June 2001 50

L-17 7 17 June 2001 100
L-23 11 17 May 2001 75

L-93 103 3 June 2001 900
L-93 104 13 June 2001 200

4.6.2 Relationship sets
Let R be a relationship set involving entity sets Es, E»,.. .., Em. The table corresponding to

the relationship set R has the following attributes:

Ui, Primary_Key(E))

106 Chapter 04 — Entity-Relationship Model

If the relationship has k descriptive attributes b1, ba,..., bk, we add them too:
UL, PrimaryKey(Ei) U {by, by, ... by
An example: The relationship set borrower involves the entity sets customer and loan.
Their respective primary keys are customer-id and loan-number. This gives us the table of
Figure 4.20.
Figure 4.20 the relationship set — borrower

Customer-id | loan-number
019-28-3746 L-11
019-28-3746 L-23
244-66-8800 L-93
321-12-3123 L-17
335-57-7991 L-16
555-55-5555 L-14
677-89-9011 L-15
963-96-3963 L-17

Non-binary Relationship Sets
The ternary relationship of Figure 4.17 gives us the table:
works-on(employ-id, title, branch-name)

As required, we take the primary keys of each entity set. There are no descriptive
attributes in this example.

Linking a Weak to a Strong Entity
These relationship sets are many-to-one, and have no descriptive attributes. The primary
key of the weak entity set is the primary key of the strong entity set it is existence-
dependent on, plus its discriminator.

The table for the relationship set loan-payment in Figure 4.18 would have the same
attributes as the table in Figure 4.20, and is thus redundant.

2.6.3 Generalization

We can express the similarities between the entity sets by generalization. This is the
process of forming containment relationships between a higher-level entity set and one or
more lower-level entity sets.

Consider extending the entity set account by classifying accounts as being either
savings-account or checking-account. Each of these is described by the attributes of
account plus additional attributes. (Savings has interest-rate and checking has overdraft-
amount.) In E-R diagrams, generalization is shown by a triangle ISA relationship set as

shown in Figure 4.18.

Chapter 04 — Entity-Relationship Model 107

Generalization hides differences and emphasizes similarities. Distinction made through
attribute inheritance: attributes of higher-level entity are inherited by lower level entities.
Two methods are available for conversion to a table form, and the following tables are
created from the entity sets generalized by the ISA relationship set in Figure 4.18.:

Method 1: Create a table for the high-level entity, plus tables for the lower-level
entities containing also their specific attributes.
account(account-number, balance)
savings-account(account-number, interest-rate)
checking-account(account-number, overdraft-amount)

Method 2: Create only tables for the lower-level entities.
savings-account(account-number, balance, interest-rate)

checking-account(account-number, balance, overdraft-amount)

108 Chapter 04 — Entity-Relationship Model

BE Summary

e Data modeling is the process of analyzing and defining all the different data your
business collects and produces, as well as the relationships between those bits of
data. The data modeling the entity-relational mode is intended primarily for the DB
design and the entity-relationship model or entity-relationship diagram (ERD) is a
data model or diagram for high-level description of conceptual data models.

e An entity is a real-world thing or a real-world object which is distinguishable
from other objects in the real world. An entity set is a set of entities of the same type.
Attribute is a function which maps an entity set into a domain. The domain is the set
of permitted values.

e A relationship is an association among several entities. A relationship set is a
collection of relationships of the same type, and an entity set is a collection of entities
of the same type. The terms superkey, candidate key, and primary key apply to entity
and relation-ship sets as they do for relation schemas. Identifying the primary key
of a relationship set requires some care, since it is composed of attributes from one
or more of the related entity sets. Mapping cardinalities express the number of
entities to which another entity can be associated via a relationship set. There are 4
mapping cardinality must be one of: one-to-one.one-to-many, many-to-one
and many-to-many.

e Key is an attribute or a set of attributes that help to uniquely identify a tuple (or
row) in a relation (or table) type of Key in DB: Primary Key, Super Key. Candidate
Key, Alternate Key, Foreign Key, Composite Key, Unique Key. The terms superkey,
candidate key, and primary key apply to entity and relationship sets as they do for
relation schemas. Identifying the primary key of a relationship set requires some
care, since it is composed of attributes from one or more of the related entity sets.

o A database design specified by an E-R diagram can be represented by a
collection of relation schemas. For each entity set and for each relationship set in
the database, there is a unique relation schema that is assigned the name of the
corresponding entity set or relationship set. This forms the basis for deriving a
relational database design from an E-R diagram. E-R diagram basic components

are: rectangles ellipses, diamonds and lines.

Chapter 04 — Entity-Relationship Model 109

e Reduction of ER diagram to Table. The database can be represented using the

notations, and these notations can be reduced to a collection of tables.

® Questions

What is Entity-Relational Model?

What is Entity and Entity Set? Please give example?
What is Relationship and Relationship Set?

What are 4 Mapping cardinalities?

What is Keys?

What are types of Keys?

What is E-R Diagram?

What is Reducing E-R Diagrams to Tables?

Ca Exercises

1. Please look at figure 4.4 and 4.5 mapping cardinalities from textbook and

© N o g B~ 0w Db P

summary of the processing.
2. Please look at figure 4.7 the summary of symbols. Please describe the role of
each symbols in the E-R Diagram.

3. Please summary of the role in E-R Diagram.

Chapter 05
SQL

Obijective

e To practice DDL: Data Definition Language
e To practice DML: Data Modification

In this chapter, you will learn:
5.1 Introduction
5.2 DDL.: Data Definition Language
5.3 DML.: Data Modification

Chapter 05 -SQL 113

5.1 Introduction

(1) Data Definition Language (DDL)

- Define the structure of the database: CREATE (DATABASE, TABLE,
VIEW), DROP, ALTER

- Specify security constraints (authorization): GRANT
(2) Data Manipulation Language (DML)

- Modify data in the database: INSERT, DELETE, UPDATE

- Query a database: SELECT

* Implemented as a part of the system R project in the early 1970's.
l, DB2: RDBMS by IBM.

» ANSI published a SQL standard in 1986.
= Then, ANSI and ISO SQL92 standard.
= Every commercial RDBMS supports SQL92.
(DB2, Oracle, Informix, Sybase, MS SQL-Server, MySQL etc.)

* MySQL: phpMyAdmin
- MySQL User ID/Password

)+ [i/ comedudod, knue, ae./phpmyadmin DB B

oHeE) BIE 220 SAFI@ 2D Z8TH)

o [phoMyadmin [B - B &~ P HORE) - 3 EH0 - T

php.
phpMyAdmin Hl 245U CH

@ Internet wI00% -

e . /= phpMyadmin - Wi, | = db-chapdli].hwp ...

114 Chapter 05 -SQL

5.2 DDL.: Data Definition Language
The most common command types in DDL are CREATE, ALTER and DROP. All three

types have a predefined syntax that must be followed for the command to run and changes
to take effect.
* Used by DBA.

* Creating a DB
CREATE DATABASED(...)

* Creating a relation into the DB
CREATE TABLE R (A1 D1, A2 D2, ..., An Dn)
WHERE R: the name of the relation
Ai: the attribute
Di: the data type of the domain Ai

Customer
name city address
char(20) char(20) char(50)

CREATE TABLE Customer
(name char(20) NOT NULL,
city char(20),
address char(50),
PRIMARY KEY (name))

Branch
branch asset city
char(15) int char(30)

CREATE TABLE Branch
(branch char(15) NOT NULL,
asset integer,
city char(30),
PRIMARY KEY (branch))

Chapter 05 -SQL 115

Deposit
branch account name balance
char(15) char(10) char(20) int

CREATE TABLE Deposit

(branch char(15),

account char(10) NOT NULL,

name char(20),

balance integer,
PRIMARY KEY (account),
CHECK (balance>=100),
FOREIGN KEY (branch) REFERENCES Branch,
FOREIGN KEY (name) REFERENCES Customer)

CREATE TABLE Laon

(branch char(15),

account char(10) NOT NULL,

name char(20),

balance integer,
PRIMARY KEY (account),
CHECK (balance>=100),
FOREIGN KEY (branch) REFERENCES Branch,
FOREIGN KEY (name) REFERENCES Customer);

Entity integrity?
Domain integrity?
Referential integrity?

* Create an index on the attribute
CREATE INDEX A-ix ON R(A)
CREATE INDEX AB-ix ON R(A,B)

116 Chapter 05 -SQL

* Remove a relation from the DB

DROP TABLER /* Remove R from the DB. */

* Change a relation scheme.
ALTERTABLER ADD AD
MODIFY
DROP

e.g., ALTER TABLE R ADD A char(15)
ALTER TABLE R MODIFY A integer
ALTER TABLE R DROP Primary Key
— ALTER TABLE R ADD Primary Key R(A)

e.g., ALTER TABLE dept DROP PRIMARY KEY CASCADE;
= The CASCADE option drops any ‘foreign keys' that reference the primary
key
* Creating a View (NOT a relation)
- Security considerations may require that certain data be hidden from user.
= It is possible to support a large number of views on top of any given set of actual
relations.

= A view must be 'recomputed’ for each query that refers to it.

e.0., CREATE VIEW DepositCustomer AS
(SELECT account, branch, name FROM Deposit)

e.g., CREATE VIEW AllCustomer AS
(SELECT branch, name FROM Deposit)
UNION
(SELECT branch, name FROM Loan)

5.3 Data Manipulaltion Language (DML)

DML is an abbreviation for Data Manipulation Language. Data Manipulation Language

or DML represents a collection of programming languages explicitly used to make changes

Chapter 05 -SQL 117

in the database, such as: CRUD operations to create, read, update, and delete data. Using

the INSERT, SELECT, UPDATE and Delete commands

* Used by programmers.

* Insertion

- A newly created relation is empty initially.

= Load data into the relation.

Deposit
branch account name balance
kangnam 123 YS 1000
Loan
branch account name balance

INSERT INTO Deposit

VALUES (‘kangnam°®, 123, “YS*, 1000)

INSERT INTO (account, name, balance, branch)
VALUES (123, “YS*, 1000, ‘kangnam®)

INSERT INTO Deposit

(SELECT branch, account, name, 200
FROM Loan
WHERE branch=‘kangnam’)

INSERT INTO Deposit
VALUES (‘kangnam®, 123, NULL, 1000) /* Not yet determined (#0) */

-An insertion is permitted through a view only if the view in query is defined in terms of

one relation of the actual DB.

e.g., INSERT INTO DepositCustomer VALUES (‘kangnam®, 111, ‘Rho*)

118 Chapter 05 -SQL

= (‘kangnam‘, 111, ‘Rho‘, NULL) is inserted into Deposit.

What if All Customer?
- All aggregate operation(AVG, MIN, MAX, SUM, COUNT) ignore tuples with NULL
values on the argument attributes.
e.g., SELECT SUM(balance)
FROM Deposit

SELECT COUNT(name) AS deposit Customer
FROM Deposit

* Updating: Change a value in a tuple
e.g., UPDATE Deposit SET balance=balance*1.05 /* interest rate= 5%*/

e.g., UPDATE Deposit SET balance=balance*1.06
WHERE balance>10000;
UPDATE Deposit SET balance=balance*1.05
WHERE balance<=10000
* Deletion

e.g, DELETE FROM Loan /* delete all tuples */

DELETE FROM Loan WHERE name=YS*

DELETE FROM Loan WHERE account BETWEEN 100 AND 200

DELETE FROM Loan WHERE branch IN (SELECT branch
FROM Branch
WHERE city="‘seoul)

DELETE FROM Loan WHERE balance < (SELECT AVG(balance)
FROM Deposit)
= (1) Calculate average.
(2) Mark tuples to be deleted.

Chapter 05 -SQL 119

(3) Once done marking, delete all marked tuples.

[Example: Bank DB]

Branch
branch asset city
kwangan 100 pusan
haundae 200 pusan
dongback 400 pusan
sinchon 300 seoul
kangnam 50 seoul
seocho 500 seoul
Customer
name city address
YS pusan kwangan
Rho pusan haundae
Chun pusan dongback
DJ pusan kwangan
Deposit
branch account name balance
kwangan 111 YS 100
kwangan 112 Rho 200
kwangan 113 Chun 400
Loan
branch account name balance
kwangan 111 YS 10000
haundae 112 Rho 20000
dongback 113 Chun 40000
kwangan 114 DJ 50000

120 Chapter 05 -SQL

desc Branch;
desc Customer;
desc Deposit;
desc Loan;

select * from Branch;
select * from Customer;
select * from Deposit;

select * from Loan;

* Query Processing

1. Translation of a high-level SQL query

= Internal ‘relational algebra’ expression

2. Query optimization: The most efficient execution plan
= Performance in terms of the 'no. of disk accesses' required
= The difference between a 'bad' strategy and a 'good' strategy

1. Execution of a query: Query output

parser and relational algebra
translator expression

<G>

execution plan

=

* Query-execution plan
- Parse-tree representation

- Annotated instruction

Chapter 05 -SQL 121

H customer-name

I1

customer-name
G branch-city=Brooklyn

/ X
o branch-city=Brooklyn

account depositor branch

account deposito

(b) Transformed Expression Tree

(a) Initial Expression Tree

* Retrieving

SELECT A1, A2, ..., An
FROMR1, R2, ..., Rm

WHERE P
where Ai: attribute

Ri: relation
P : predicate
SELECT * /* project all attributes of all relations */
FROM R1,R2,...,Rm /*inthe FROM clause. */
WHERE P

Duplicate tuples

SELECT DISTINCT branch /* Duplicates are removed */
FROM Deposit

SELECT branch /* Duplicates are NOT removed */
FROM Deposit

122 Chapter 05 -SQL

Set operations

A list of customers who have a deposit account, a loan account, or both accounts at the

‘kwangan’ branch?

(SELECT name
FROM Deposit
WHERE branch=‘kwangan®)
UNION
(SELECT name
FROM Loan
WHERE branch=*‘sinchon*)

A list of customers who have both accounts in the ‘kwangan’ branch?

(SELECT name
FROM Deposit
WHERE branch=‘kwangan‘)
INTERSECT
(SELECT name
FROM Loan
WHERE branch="‘sinchon®)

A list of customers who only have a loan account at the ‘kwangan’ branch?

= MINUS (NOT standard, Supported in System R)
= EXCEPT

A list and city of customers who have a loan account?

Chapter 05 -SQL 123

Join

SELECT Customer.name, city
FROM Customer, Loan

WHERE Customer.name = Loan.name // join attr.

& SELECT Customer.name, city

FROM Customer natural join Loan /I natural join

& SELECT Customer.name, city

FROM Customer join Loan using (name) /l'join ~ using (join attr.)

The list and city of customers who have a loan account at the ‘kwangan’ branch?

SELECT Customer.name, city
FROM Customer, Loan

WHERE Customer.name = Loan.name and branch="kwangan’

A list of customers who have a loan account at the ‘kwangan’ branch, city and balance of

deposit?

SELECT Customer.name, city
FROM Customer, Loan
WHERE Customer.name = Loan.name and Customer.name = Deposit.name and

branch="kwangan’

A list of customers who have both accounts in the ’kwangan’ branch?

= INTERSECT

SELECT Loan.name
FROM Loan JOIN Deposit USING (name) /* Natural Join */
WHERE Loan.branch = 'kwangan'

124 Chapter 05 -SQL

(c.f.) SELECT Deposit.name
FROM Loan JOIN Deposit USING (name)
WHERE Deposit.branch = 'kwangan'

(c.f.) SELECT Deposit.name
FROM FROM Loan JOIN Deposit USING (name, branch)
WHERE Deposit.branch = 'kwangan'

Arithmetic Expression

SELECT account
FROM Deposit
WHERE balance BETWEEN 200 AND 300
(© WHERE balance >= 200 AND balance <= 300)

SELECT account
FROM Deposit
WHERE balance NOT BETWEEN 200 AND 300

String match

Any substring: % Oracle * Informix % MySQL

Any character: - ? _ (underbar)

SELECT name
FROM customer
WHERE address LIKE ‘%kwang%-*

SELECT name
FROM customer

WHERE address NOT LIKE ‘%kwang%°

escape character: ‘percent: \%°

Set Membership (€)
= INTERSECT

SELECT DISTINCT name
FROM Loan
WHERE branch=‘kwangan‘ and
name IN (SELECT name
FROM Deposit
WHERE branch="kwangan®)

< SELECT DISTINCT name
FROM Loan
WHERE branch=‘kwangan‘ AND
(branch, name) IN (SELECT branch, name
FROM Deposit)

Set comparison

Which branch has greater assets than the branches in ‘Pusan’?

Which branch has greater assets than all branches in ‘Pusan’?

SELECT branch
FROM Branch
WHERE city != ‘Pusan‘and /* <>*/

asset) SOME (SELECT asset

FROM branch
WHERE city=‘Pusan®)

SELECT branch
FROM Branch
WHERE city != ‘Pusan‘ and /* <> */

asset P)ALL (SELECT asset

FROM branch

Chapter 05 -SQL 125

126 Chapter 05 -SQL

WHERE city=‘Pusan*)

Testing for empty relations.

EXISTS — True : if the subquery is non empty.

— False : " empty.

A list of customers who have both deposit and loan accounts in the ‘kwangan’ branch?
(1) Set operation: INTERSECT
(2) Join
(3) Set membership: IN
(4) EXISTS

SELECT name
FROM Customer
WHERE EXISTS (SELECT * FROM Deposit
WHERE Deposit.name=Customer.name and
branch=‘kwangan*)
AND EXISTS (SELECT * FROM Loan
WHERE Loan.name=Customer.name and
branch=‘kwangan*)

Tuple variables: Rename (p)

Tuple variables are defined in the FROM clause.

= Tuple variables are most useful for comparing two tuples in the same relation.

The name of the customer who has a savings account at the same branch as "YS'?

SELECT DISTINCT T.name
FROM Deposit S, Deposit T
WHERE S.name =YS* and
S.branch = T.branch AND
T.name != “YS*

< SELECT DISTINCT name
FROM Deposit
WHERE S.name =YS*‘ and
branch IN (SELECT branch FROM Deposit
WHERE name = ‘YS®)
Ordering the tuples

SELECT name
FROM Deposit
WHERE branch=‘kwangan’
ORDER BY name ASC /* DESC */

Aggregate functions

AVG, MIN, MAX, SUM, COUNT

SELECT COUNT(name) FROM Deposit

SELECT SUM(balance) FROM Deposit

SELECT branch, AVG(balance) FROM Loan
GROUP BY branch

CREATE VIEW View30000 AS
(SELECT branch, AVG(balance) AS ‘avg loan amount’,
SUM(balance) AS 'total loan amount'
FROM Loan
GROUP BY branch
HAVING AVG(balance) >= 30000)

Outer join

= Include (left/right/full) tuples not included in natural join

NATURAL LEFT OUTER JOIN

Chapter 05 -SQL 127

128 Chapter 05 -SQL

NATURAL RIGHT OUTER JOIN
NATURAL FULL OUTER JOIN

Referential integrity
CREATE TABLE Employee
(name char(10),

branch char(10),
FOREIGN KEY (branch) REFERENCES Branch);

INSERT INTO Employee VALUES (‘An‘, ’kwangan‘);
INSERT INTO Employee VALUES ('Yu‘, ’onchun®);

Domain integrity

/* CHECK (balance>=100) */

INSERT INTO Deposit
VALUES (‘kwangan®, 123, ‘DJ¢, 10)

Chapter 05 -SQL 129

BE Summary

e The most common command types in DDL are CREATE, ALTER and DROP. All
three types have a predefined syntax that must be followed for the command to run
and changes to take effect.

e DML is an abbreviation for Data Manipulation Language. Data Manipulation
Language or DML represents a collection of programming languages explicitly used
to make changes in the database, such as: CRUD operations to create, read, update,
and delete data. Using the INSERT, SELECT, UPDATE and Delete commands.

® Questions

1. What is DDL: Data Definition Language command in SQL?

2. What is DML : Data Manipulation Language command in SQL

3. What are the difference between DDL: Data Definition Language and
DML: Data Manipulation Language in SQL.

130 Chapter 05 -SQL

Ca Exercises

1. Please write the correct SQL statement to create a new database called

rttcDB.
2. Please write the correct SQL statement to create table grade follow table
below:
Field Type Null Key Default
ID Integer(3) Yes Primary Key Null
khmer Integer(3) Yes Null
math Integer(3) Yes Null
science Var(3) Yes Null

Please write the correct SQL statement to insert 3 students into table grade

follow table below:

ID khmer math science comment

111 90 95 85 outstanding
112 100 95 75 kind warm
113 70 90 80 need to study hard

3. Please write the correct SQL statement to create table student follow table
below:
Field Type Null Key Default
ID Integer(3) Yes Primary Key Null
name var(50) Yes Null
address var(50) Yes Null

Chapter 05 -SQL 131

Please write the correct SQL statement to insert 3 students into table student

follow table below:

ID name address
111 Chan dara Null
112 Uk bora Null
113 Sorn piseth Null

4. Please write the correct SQL statement update table grade set math=60

with 1d 112

large to small through math.

Functions through khmer.

khmer score.

Please write the correct SQL statement select from grade by ordering from

Please write the correct SQL statement select from grade by aggregate

Please write the correct SQL statement select student name with the highest

Please write the correct SQL statement select the name of the lowest

student and show all the scores that get comment study hard.

Please write the correct SQL statement Joined Relations (Inner join, Left

outer join, Natural inner join, Natural full outer join) and show result?

Chapter 06
PHP

Obijective

To Understand World Wide Web

To practice Web Server(httpd)

To practice PHP (Professional Hypertext Preprocessor)
To practice My SQL

In this chapter, you will learn:

6.1 WWW (World Wide Web)

6.2 Installing Web Server (httpd)

6.3 Installing PHP (Professional Hypertext Preprocessor)
6.4 Install My SQL

Chapter 06 —PHP 135

6.1 WWW (World Wide Web)

* Introduction

- Wide-area information service and software that allows you to search all kinds of
information distributed on the Internet in a unified way

- Proposed by Tim Berners-Lee of the European Council for Nuclear Research
(CERN) in 1989.

- Stored and managed as a unit called Home Page in the form of Hypertext within the
Web Server

- Connected to Hypertext around the world geographically distributed on the Internet

by a function called Link.

* HTTP (HyperText Transfer Protocol)

- Standard protocol that defines how a web client and web server communicate and
how data information is transferred from the web server to the web client.

- Obtain data information of web server by entering URL (Uniform Resource Locator)
starting with http://

- TCP/IP is used for the correct transmission of data in the underlying

HT

Y

HT]
Web Server

6.2 Installing Web Server (httpd)

Apache is the most commonly used Web server on Linux systems. Web servers are used to
serve Web pages requested by client computers. Clients typically request and view Web
pages using Web browser applications such as Firefox, Opera, Chromium, or Internet
Explorer.

* Installing Apache on Windows 10 64bit Environment

- Go to ‘https://www.apachelounge.com/download/’ and download it.

136 Chapter 06 —PHP

Apache 2.4.54 Wing4

—

pac
(@ httpd-2,4,54-winB4-Y516,2ip > 02 Now 22 10,642k

PGP Signature (Public PGP key), SHA1-SHAS12 Checksums
Apache 2.4.54 Win32
@ httpd-2,4,59-win32-Vs16.2ip 02 Nov '22 9,714k

PGP Signature {Public PGP _key), SHAT-SHAS1Z Checksums

To be sure that a download is intact and has not been tampered with, use PGP, see PGP Signature

- Unzip the downloaded file.

[httpd-2.4.54-winb4-V51§ == N2.41.9077 0921
Open

) Share with Skype
&8 Edit with PyCharm Community Edition
B8 0pen with WinRAR

m Extract Here
BB Extract to "httpd-2.4.54-win64-VS16"

- Move the Apache24 folder to the ‘C:\’. After moving, the final path will be
‘C:\Apache24’ path.

Fesihesst

SRecycle.Bin View
SWinREAgent Sort by
Apache2d Group by
Config.Msi Refresh
s Documents and Se

; Paste)
Intel —
MSOCache Paste shortcut

- Open the ‘httpd.conf’ file with notepad. Basically, find the part below and change the
settings to suit your installation PC. (Specifies the Server Root path. Since it was

specified as C:\Apache24 above, modify it accordingly.)

ThisPC » (C:) 05 » Apache?d > conf »
~
Mame
extra
original
|j charset.conv
mjhttpd‘conf
|j magic L=
|j mime.types Edit

Chapter 06 —PHP 137

ServerRoot “c:\Apache24”

| u Find X
File Edit Format View Help — —
Find what: (|ServerRoot) |(E End Next J)
Define SRVROOT "c:\Apache24" — - —
Direction Cancel
"${SRVROOT} " [Match case Olp ®Down
[] Wrap around

Note: Press Ctrl+F, and then type your search words

- Set the port of the web server. The default is 80. If you do not use a different port

number, leave it as is.

Listen 80
- This is the path where the files of the website displayed when accessing the web server

with a web browser are saved. When connecting to http://localhost:80 (or http://localhost),
the index.html page in DocumentRoot is found and displayed.

DocumentRoot “c:\Apache24/htdocs”
Run the command prompt window in administrator mode. (If you want to uninstall

the installed Apache server, type httpd.exe -k uninstall command.)

C:\Apache25/bin
Httpd.ext —k install

i Command Prompt B8 Administrator: Command Prompt

App
Run as administrator

Apps

L} Open file location

1 Anaconda Prompt (anaci 5
Pin to Start

-~ Anaconda Prompt (Mini Pin to taskbar
mpm_winnt:error]

1 Orange Command Prompt >

- Execute the file below in Window File Manager:

C:\Apache24\bin\ApacheMonitor.exe

< Sta rt>
e

Restart

11/9/2022

- Run ‘Apache Monitor’ by right-clicking the Apache icon on the taskbar at the bottom

right of the Window.

138 Chapter 06 —PHP

- Start and stop the server using the start and stop buttons in Apache Monitor.
- Launch a web browser and connect to ‘http://localhost’.

- The will produce the following Result:

&« C { @ localhost

It works!

6.3 Installing PHP (Professional Hypertext Preprocessor)

PHP (Hypertext Preprocessor) is known as a general-purpose scripting language that can
be used to develop dynamic and interactive websites. It was among the first server-side
languages that could be embedded into HTML, making it easier to add functionality to web
pages without needing to call external files for data.

* Introduction

- Server-side script: A technology that directly processes the files coded in the web
server by the application server operating on the server side and sends the results to the
browser

- You can configure the fastest website running on Windows, Unix, and Linux
operating systems.

- Since it is a language developed with an open source model, it is ported so that it can
be operated in various operating systems and web server environments.

- A very accessible web development language for small developers.

* Installing PHP and connecting to httpd

- Please download the appropriate version of PHP from the site below. You must select
‘Thread Safe’ rather than Non Thread Safe for it to work properly! (the VS16 version of
64bit Thread Safe)

windows.php.net/download/

VS16 x64 Non Thread Safe (2022-Oct-25 19:03:48)

sha256: dbfo5bc61fd342c4b5a086c5a34120d710126b22f74485576367030b3bbo7df1

Chapter 06 —PHP 139

- Change the name to php8 (php version name) and save it in the same folder as
Apache, and change ‘php.ini-development’ in the folder to ‘php.ini’.
- After that, open php.ini with notepad.
- Find extension_dir and change extension_dir = ""C:\php8\ext",
extension=curl
extension=mysqli
extension=gettext
extension=mbstring
extension=openssl
extension=pdo_sqlite
- remove the semicolon °;’ in front of it to activate the module.
- Additionally, to set the time zone, search for [Date] and change ‘date.timezone’ as
follows.
[Date]
; Defines the default timezone used by the date functions
; http://php.net/date.timezone
date.timezone = Asia/Seoul
- Change the error reporting settings as follows.
error_reporting=E_ALL & ~E_NOTICE & ~E_DEPRECATED &
~E_USER_DEPRECATED
- After that, open ‘httpd.conf’ in conf in Apache24 folder with notepad and paste the
following part in the bottom line.
PHPINiDir "C:/php8"
LoadModule php_module **C:/php8/php8apache2_4.dII"
AddHandler application/x-httpd-php .php
AddType application/x-httpd-php .php .html
- Search for ‘IfModule dir_module’ and replace it as follows.
<IfModule dir_module>
Directorylndex index.php index.html
</IfModule>
- Finally, create ‘phpinfo.php’ as below in ‘Apache24\htodcs’.
<?php
phpinfo();
>

140 Chapter 06 —PHP

- After that, type ‘localhost/phpinfo.php’ in the address bar and the screen of php
information will appear!

- The will produce the following Result:

@ PHP 8111 - phpinfol) X +

< C { @ localhost/phpinfo.php

system
Build Date
Build System
Compiler
Architecture

windows NT SORNRITHY-12MR 10.0 build 19043 (Windows 10) AMD54
Sep 28 2022 11:05:14

Microsoft Windows Server 2019 Datacenter [10.0.17763]
Visual C++ 2019
%64

Basic Programming
* php #1-1: Hello World
<?php

Echo ""Hello World!!' \n"";

phpinfo();
7>

- The will produce the following Result:

& localhost X @ PHP&.1.11 - phpinfol)
< C {t @ localhost/Hello%20World.php
Hello Worldll

* php #2-1: php, html, Javascript

<?php

Echo ""Hello World. Today is'.date(*"Y-m-d", time());
>

<h3>How are you?</h3>

<script>

document.write(*"Hello World. Today is *"+Date());
</script>

Chapter 06 —PHP 141

- The will produce the following Result:

&« C @ localhost/date.php

Hello World. Today 1s2022-11-09
How are you?

Hello World. Today 1s Wed Nov 09 2022 15:09:19 GMT+0900 (Korean Standard Time)

* php #3-1: variables

[* This is a comment... */
$mycounter=1;

$mystring=""Hello"";
$myarray=array(*‘one",""two"",""three');
echo $mycounter.”'
";

echo $mystring;

echo "'
";

echo $myarray[0];

echo "'
"";

$username=""Kim Taeyoung"’;
echo $username;

echo ""
";
$current_user=$username;
echo $current_user;

7>

- The will produce the following Result:

<« C {t @ localhost/Variables.php

" This 15 a comment__ */ 1
Hello

one

Kim Taevoung

Kim Taevoung

142 Chapter 06 —PHP

* php #3-2: types

<?php

/* automatic transformation... */

$number=123*678;
echo $number."
""

echo substr($number,3,2)."
";

$pi="'3.141592"";
$radius=5;
$area=$pi*($radius*$radius);
echo $area;
>
- The will produce the following Result:
<« C Y @ localhost/Datatype.php
83394

394
T8.5398

* php #3-3: function

<?php

/* function... */

$temp=""The time is '*;
echo $temp.longdatel(time());

function longdatel($timestamp){

return date(*'H:i:m"", $timestamp);

echo ""

";

Chapter 06 —PHP 143

echo longdate2($temp,time());

function longdate2($text,$timestamp){
return $text.date("'H : i : m", $timestamp);

echo "'

"";
echo test()."->"".test()."->""test();
function test(){
static $count=0;
$count++;

return $count;

}

>
- The will produce the following Result:
¢ C (@ @ localhost/Funtionphp
This time is 06:38:11

This time 1s This time 15 06 - 38 - 11

15223

* php #4-1: repetition

<?php

/* This is a comment... */

$count=0;
while(++$count<=10)

echo $count."'
"";

echo "'--------
":
for($i=1, $j=1; $i+$j<=10; $i++, $j++)
echo $i."+".$j."'
"";

144 Chapter 06 -PHP

$fp=fopen("'4-1.txt",""wb");

for($j=0; $j<10; ++$j{
$written=fwrite($fp, "'data".$j."\n"");
if($written==FALSE) break;

}

fclose($p);

>

- The will produce the following Result:

&« C Y @ localhost/repetion.php

=
|

Yl 20 08 O L e L
=
H

+
A b

6.4 Installing MySQL

MySQL is a tool used to manage databases and servers, so while it's not a database, it's

widely used in relation to managing and organising data in databases.

* Installing MySQL

https://dev.mysgl.com/downloads/installer/

First of all, we need to download the installer.

Archives

E
a
&
&

When you try to start the download, the website will ask you to log in or create an

account, but you don’t have to do so. Note the No thanks, just start my download button.

Chapter 06 —PHP 145

When you open the installer, it will first configure the installation and then ask for the

user’s permission to proceed:

ﬁ'_:}' mysgl-installer-web-community-2.0.31.0.msi

Plsse wai whie Windows configures HySGL istallr - Communiy
I (o
5

Cancel

When this is over, we’ll finally see the installer interface. As you can see in the image
below, the process consists of four steps:
1. Choosing a setup type
2. Downloading the files
3. Installing the software
4

Finishing the installation

[2] MySQL Installer

T~
b\

MySQL. Installer Choosing a Setup Type
Adding Community
Please select the Setup Type that suits your use case

Choosing a Setup Type O Developer Default
Installs all products needed for
Mys0L development purposes.

O Server only
Installs only the MySQL Server
product

O Ciient only
Installs anly the MySQL Client
products, without a server.

O Full
Installs all included MySGL
products and features.

@ Custom
Manually select the products that
should be installed on the

system.

Next > Cancel

There are five types of setups available in this first step and you can check the side
box to see what each of them will install. However, we strongly recommend, especially if
you’re just getting started with SQL, to select the default option.

For select the default option: The default option is large. It requires a large computer
to use to install Mysgl to run properly and avoid crashes during use.

The most important features, among others, this setup will install are:

e MySQL Server: the database server itself
e MySQL Workbench: an application to manage the server

e MySQL for Visual Studio: this feature enables the users to use MySQL from Visual
Studio

146 Chapter 06 —PHP

e The documentation and tutorials
It’s also ok to choose the full setup as this will install all MySQL resources available.
But if your computer is medium or under we should choose the Custom and select
the products you would like to install on your computer.
After you choose the setup option, click on Next.

If we select Custom please do the following:

[Z] MySQL Installer — X
MySQL. Installer Select Products
Adding Community Please select the praducts you would like to install an this computer,
Filter:
T ‘-u Software, Current GA Any Edit
Availabl . Products To Be Installed:

{5 MySQL Sever
[#- MySQL Server 8.0

249

Enable the Select Features page to
customize product features

[=] MysaL installer — X

Installer Select Products
Adding Community Please select the products you would like to install an this computer,

Filter:

Available Products: Products To Be Installed:
“MySQL Server 8.0.31 - X4

[=- MySCL Shell 8.0 ~

+MySOL Workbench 8.0.31 - X64
MySOL Shell 8.0.31 - X64

Y0

) Enable the Select Features page to
customize product features

1. Choose the setup: MySQL Server 8.0.31 — X64

e Click on the + MySQL servers

e Click on the + MySQL Server

e Click on the + MySQL Server 8.0

e Select MySQL Server 8.0.31 — X64 and press the right arrow »
2. Choose the setup: MySQL Workbench 8.0.31 — X64

e Click on the + Application

e Click on the + MySQL Workbench

Chapter 06 —PHP 147

e Click one the + MySQL Workbench 8.0

e Select MySQL Workbench 8.0.31 — X64 and press the right arrow »
3. Choose the setup: MySQL Shell 8.0.31 — X64

e Click on the + Application

e Click on the + MySQL Shell

e Click on the + MySQL Shell 8.0

Select MySQL Shell 8.0.31 — X64 and press the right arrow »

Click on Next
Requirements
At this point, there’s a chance you’ll be asked to install some required software, the most
common being the Visual Code. The installer can automatically solve some requirement

issues, however, this is not the case here:

[T MySQL Installer - X

MySQL. Installer Check Requirements
Adding Community

The following products have failing requirements, MySQL Installer will attempt to resolve
them automatically. Requireme; as manual cannot be resolved automatically. Click
on each item to try and resolve i

ForProduct
O MySQL Server8.031

© MySQL Workbench 8.0.31
© MySQL Shell 8.0.31

Status

-+ 2019 Redistrib,.,
+= 2019 Redistrib...
sual C++ 2019 Redistrib..

- Click on Execute

- I agree to the licences terms and conditions
- Click on Install

- Setup Successful (Click on Close)

(2] MySQL Installer - X

MySQL. Installer Check Requirements

Adding Community

The following products have f requirements. MySQL Installer will attempt to resolve
them automatically. Requirements marked as manual cannot be resolved automatically. Click
on each item to try and resolve

For Product Status

@ MysQl Server8.031 INSTL DONE
& MySQL Workbench 8.0.31 - INSTL DONE
@ MySQL Shell 8.031 Microsoft Visusl C++ 2019 Redistrib... INSTL DONE

148 Chapter 06 —PHP

Click on Next

Download & Install
You have now reached the download section. The section name is self-explanatory: you’ll
download all the components in the setup option you selected.

[T MysaL Installer — X

MySQIf. Installer Download

Adding Community
The following products will be downloaded.

Click [Execute] to download the fallowing packages.

<Bak || Beate || Concel

Click on Execute and the download will start. This might take a few minutes to be
concluded. When it’s done, you should see tick marks on every item. Then you can
proceed.

[Z] MysQL Installer — X

Show Details >

oo | [t][s]

The next screen you’ll see is almost the same as the last one, but now it will install all the
components you’ve just downloaded. This step will take significantly longer than the
previous one. When it’s over, you’ll see all the ticks marks again:

] MySQL Installes - X

MySQL. Installer Installation
Adding Community
The following products will be installed.
Product Status Progress Notes
[E] mysat severso22 Ready to downlosd
[E] mysat workbench 8.0.22 Ready to download
] mysatsnensoz2 Ready to download

Click [Execute] to install the following packages.

< Back Execute Cancel

Chapter 06 —PHP 149

Click on Execute

Configuration
The next step is to configure the server. You’ll see the following screen. Hit Next.

[T MySQL Installer - X

MySQL. Installer Product Configuration
Adding Community

We'll now walk through a configuration wizard for each of the following products.

You ean cancel at any point if you wish to leave this wizard without configuring al the

products
Product status
MysQL Server 80.31 Ready to configure
figuration
< >

[=] MysaL Installer - X

MySQL. Installer Type and Networking
MySQL Server 8.0.31 Server Configuration Type

Choose the correct server configuration type for this MySOL Server installation. This setting will
define how much system resources are assigned to the MySQL Server instance.

Config Type: | Development Computer -

Connectivity
Use the following contrels to select haw you would like te connect to this server,
/P
Open Windows Firewall ports for network aceess

X Protocel Port:

[Named Pipe PipeName: MYSOL
[Shered Memory ~ Memory Name: | MYSOL

Advanced Configuration

Select the check box below to get additional configuration pages where you can set advanced
and logging options for this server instance.

[Show Advanced and Logging Optiens

It’s important to keep Development Computer in the Config Type field as you’re probably
installing this on your personal computer and not on a dedicated machine. You can choose
the port, but the default will work just fine. Click Next. For the authentication method, let’s
stick with the recommended option and click Next:

[Z] MySQL Installer - X

MySQL. Installer Authentication Method

MySQlL Server 8.0.31
@ Use Strong Password Encryption for Authentication (RECOMMENDED)

MySQL 8 supports a new authentication based on improved stronger SHA256-based password

methods. It is recommended that all new MySOL Server installations use this method going

forward.

Authentic connectors and clients which add support for this new 8.0 default authentication

Attention: This new authentication plugin on the server side requires new versions of
A (caching_sha2_password authentication).

Currently MySQL 8.0 Connectors and community drivers which use libmysglclient 8.0 support
this new method. If clients and applications cannot be updated to support this new
authentication method, the MySQL 8.0 Server can be configured to use the legacy MySQL
Authentication Method below.

O Use Legacy Authentication Method (Retain MySQL 5x Compatibility)
Using the old MySQL 5.1 legacy authentication method should only be considered in the
following cases:

- If applications cannot be updated to use MySQL 8 enabled Connectors and drivers,
- For cases where re-compilation of an existing application is not feasible,
- An updated, language specific connector or driver is not yet available,

Security Guidance: When possible, we highly recommend taking needed steps towards
upgrading your applications, libraries, and database servers to the new stronger authentication,
This new methed will significantly improve your security.

<Bock || Net> || Concel

150 Chapter 06 —PHP

Now it’s time to create the root account. You’ll be asked to set a password. Remember to
use a strong one.

On this same screen, you can create other users and set their passwords and permissions.
You just have to click on Add User and fill in the blanks. Then, click Next.

[Z] MySQL Installer

nstaller Accounts and Roles
MySQL Server 8.0.31

Root Account Password

Enter the password for the root account. Please remember to store this password in a secure
place.

My5QL Root Password: [sesesses |

Repeat Password: ‘ ‘

Password strength: Weak
Accounts and Roles

MySQL User Accounts

Create MySOL user accounts for your users and applications. Assign a role to the user that
consists of a set of privileges.

MySQL User Name Host User Rale Add User
Edit User

Delete

| <Back || Net> || Cancel

Now you can choose the Windows service details, such as the service name, account type,

and if you want to start MySQL when you turn on your computer. Again, the default
options will work in most cases:

[Z] MySQL Installer

Installer Windows Service
MySQL Server 8031 Configure MySQL Server as a Windows Service
Windows Service Details

Please specify a Windows Service name to be used for this MySQL Server instance.
A unique name is required for each instance.

Windows Service Name: | MySQL80

Start the MySOL Server a it System Startup

Run Windows Service as

The MySQL Server needs to run under a given user account. Based on the security
requirements of your system you need te pick one of the options below.

(@ Standard System Account
Recommen ded for most t scenarios.
O Custom User

An existing user account can be selected for advanced scenarios.

<Back || Net> | [Cancel

Click on Next

Chapter 06 —PHP 151

[Z] MysSQL Installer - e

MySQL. Installer Server File Permissions

MySQL Server 8.0.31 MySCQL Installer can secure the server's data directory by updating the permissions of files and
folders located at:

C:\ProgramData\MySQL\MySQL Server 8.0\Data
Do you want MySQL Installer to update the server file permissions for you?

@ o5 grant full access to the user running the Windows Service (if spplicable) sn the
sdministrators group only. Other users and groups will not have access.

(O Yes, but let me review and configure the level of access.

O N, I will manage the permissions after the server configuration

<Back || New> || Cancel

Click on Next

The next screen applies the configuration. Execute it. This step also takes a while to be
concluded.

[E] MySOL Installer — X

MySQL. Installer Apply Configuration
MySQL Server 8.031 Click [Execute] te apply the changes
- Configuration Steps | Log

O Writing configuration file
Updating Windows Firewall rules
Adjusting Windows service

Initializing database (may take a long time)

Starting the server

O
o]
(o]
© Updsting permissions for the data folder and related server files
o]
O Applying security settings

o]

Updating the Start menu link

<Back | Execte || Concel

After it ends, just finish the process.

[Z] MysQL Installer - b

Apply Configuration

The configuration operation has completed.
Configuration Steps Log
& Writing configuration file
Updating Windows Firewall rules
Adjusting Windows service

Initializing database (may take a long time)

Starting the server

Applying security settings

figuratio

[
[}
]
@ Updating permissions for the data folder and related server files
]
]
[

Updating the Start menu link

The configuration for MySQL Server 8.0.31 was successful.
Click Finish to continue.

152 Chapter 06 —PHP

[T] MysQL Installer - X

MySQL. Installer Product Configuration
Adding Community

We'll now walk through configuration wizard for each of the following products.

You can cancel at any point if you wish to leave this wizard without configuring all the

products.
Product Status
MysQL Server 8.031 Configuration complete.
< >

Click on Next

This screen is followed by another one asking to apply the configuration. Just execute it
and click Finish.

We have finally reached the last screen.

[Z] MysaL installer - B3

MySQL. Installer Installation Complete
Community

The installation procedure has been completed.

Copy Leg te Clipboard

Start MySQL Workbench after setup
Start MySQOL Shell after setup

The MySQL Shell is an advanced MySQL client application that can be used to work with
single MySQL Server instances. Further, it can be used to create and manage InnoDB
Cluster, an integrated solution for high availability and scalability of MySQL databases,
without requiring advanced MySOL expertise.

[as NS)Y
m—m»—‘_i‘ i.:
L vcom cuc

Refer to the following links for documentation, tutorials and examples on MySQL Shell:

IMySOL Shell Documentation Setting up a Real World Cluster Blog
The All New MySQL InnoDB ReplicaSet Blog Changing Cluster Options Live Blog

Creating your first Database using MySQL Workbench

If you chose to start the Workbench after finishing the installation, you’ll see the following

screen:

]
#

bile Edit View Uatabase lools Scriping Help

Welcome to MySQL Workbench

MySQL Workbench is the official graphical user interface (GUI) tool for MySQL. It allows you to design,
create and browse your database schemas, work with database objects and insert data as well as

design and run SQL queries to work with stored data. You can also migrate schemas and data from other

| I8 Connect to MySQL Server x
‘ Please enter password for the
following service:
™~ M Service: Mysdliocahost: 3306
W\ piio
MySQL Connections ®® s Password: [+~ a Filter connections
[save password in vault
Local instance MySQLE0 [o] | coeel

2 roct
locathost:3306

Chapter 06 —PHP 153

Choose the connection to the server you created and log into it.
- Input your password

- Click on OK

This is your working space:

Notice in the SCHEMAS window that you already have a few sample databases to play
with. In the Information window, you can see the database you have selected. Of course,
you have the main window to write SQL code.

- Run the command prompt window in administrator mode. (If you want show database

by command.)

Best match

Command Prompt
App
. 55 Run as administrator
Settings
[0 Open file location Command Prompt
= Replace Comman
Windows PowerS| + Pin to Start

Search the web <3 Pin to taskbar

P cmd - See web resuits

= Pin to Start

Pin to taskbar

L emd

- Go to find path of MySQL Server 8.0bin
C:\Program Files\MySQL Server 8.0bin

” Undo
O Mame
s Cut
2] fido2.dl o
. J fidoZ.lib . Paste
|| harness-library.dll Delete
ts [ibd2sdi.exe
[innochecksum. exe sl
%] jemalloc.dil Right to left Reading order
%] liberypto-1_1-x64.dll Show Unicode contrel characters
4] libmecab.dll Insert Unicode control character b4
- = libprotobuf.dil
gemE j IibErotobuf.Iib Open IME
] libprotobuf-debug.dl Feconversion

154 Chapter 06 —PHP

- cd C:\Program Files\MySQL Server 8.0bin

- mysgl —u root —p

“or 'Wh' for help. Type #c' to clear the current input statement.

databases

formance_schema

- Setup New connections

Open Connection

Edit Connection...

Move to Group...

MySQL Connections ®

Copy Connection String to Clipboard
S Copy JDBC Connection String to Clipboard

= S

//M}’SQL \\ Rescan for Local MySQL Instances
‘ \‘ Add Connection(s) from Clipboard
\ oot _ /“ Start Command Line Client
\ Iccalhc:t:BBC'b/
Move Down
Move To End

Delete Connection...

Delete All Connections...

Right click on MySQL root and chose Delete Connection

MySQL Workbench X

I Delete Connection

Do you want to delete connection MySQL?

Click on Delete

-

- / N\
MysQL Connectlonsx\@/

/

Click on MySQL Connections

Chapter 06 —PHP 155

MySQL

Method to use th connect to the ROBMS

Please enter password for the
following servi

Delete Oupicate | | Movelp | Move Down Test Connection Cose

- Connection Name: MySQL

- Hostname: localhost

- Click on Store in Vault...

- Password: input your password — Click on OK
- Click on Test Connection — Click on OK

* DB #1: PHP Connect to MySQL

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to connect
to the server:

1. Start Apache

2. Start MySQL server

3. Create new file name: Mysqglconn.php and save in C:\Apache24\htdocs

<?php
$host = "localhost’;
$user = 'root';
$pw ="";
$dbName =";
$conn = new mysqli($host, $user, $pw, $SdbName);
/ICheck SQL Command
if($conn){
echo ""MySQL connection OK™;

Yelse{
echo ""MySQL connection failed™;

7>

156 Chapter 06 —PHP

- The will produce the following Result:

@ localhast/mysglconnphp x +
&« c @ localhost/mysglconn.ph
¥sq pnp

MwSQL connection OK

* DB #2: PHP Create a MySQL Database
A database consists of one or more tables.
You will need special CREATE privileges to create or to delete a MySQL database.

$sql = "CREATE DATABASE jspbook™’;

/ICheck SQL Command

$sql = "CREATE DATABASE jspbook"’;

if ($conn->query($sgl) === TRUE) {
echo ""Database created successfully';

}else {

echo "Error creating database: "' . $conn->error;

}

$conn->close();

- The will produce the following Result:

&} @ localhost/phpmyadmin

+ php

Rilen|3 ¢

localhost/connectdatabase.php X
&« C @ localhost/connectdatabase.php

M Gmai B YouTube P" Maps

o =
MySQL connect OK-Database created successfully J mysal

performance_schema

FFE R
1o L i I AN |

phpmyadmin

test

* DB #3: PHP MySQL Create Table

A database table has its own unique name and consists of columns and rows.
<?php
$host = 'localhost';
$user = 'root’;

$pw ="";

Chapter 06 —PHP 157

$dbName = 'jspbook’;
$conn = new mysqli($host, $user, $pw, $SdbName);
/ICheck SQL Command
if($conn){
echo ""MySQL connect OK";

Yelse{
echo ""MySQL connection failed";

}
/1 sql to create table
$sql = "CREATE TABLE MyGuests (
id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,
firstname VARCHAR(30) NOT NULL,
lastname VARCHAR(30) NOT NULL,
email VARCHAR(50),
reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE
CURRENT_TIMESTAMP

I

if ($conn->query($sql) === TRUE) {
echo ""Table MyGuests created successfully*';

}else {

echo "Error creating table: ** . $conn->error;

}

$conn->close();

7>

- The will produce the following Result:

o MySQL returned an empty result set (i.e. zero rows). (Query took 0.0002 seconds.)

SELECT * FROM “myguests®
< C () localhost/create%20table.php -
ot i i o [Profiling [Edit inline] [Edit] [Explain SQL] [Create PHP code][Refresh]

. id firstname lastname email reg_date
MySQL connect OKTable MyGuests created successfully

Query results operations

& Create view

158 Chapter 06 —PHP

* DB #4: PHP MySQL Insert Data

After a database and a table have been created, we can start adding data in them.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)
VALUES (*Chan’, 'Dara’, ‘chandaral68@gmail.com’)™;

if ($conn->query($sql) === TRUE) {
echo ""New record created successfully';
}else {

echo "Error: " . $sqgl . "'
"" . $conn->error;

}

$conn->close();

- The will produce the following Result:

< O () localhost/insert%20data.php

MySQL connect OKNew record created successfully

—T— = id firstname lastname email reg_date

o Edit % Copy @ Delete 1 Chan Dara chandara168@gmail.com 2022-11-21 13:25:13

* DB #5: PHP MySQL Get Last ID
Get ID of The Last Inserted Record
If we perform an INSERT or UPDATE on a table with an AUTO_INCREMENT field, we

can get the ID of the last inserted/updated record immediately.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)
VALUES ('Lay', 'Sokchea’, 'laysokchea@yahoo.com’)™;

if ($conn->query($sql) === TRUE) {

$last_id = $conn->insert_id;

echo ""New record created successfully. Last inserted ID is: " . $last_id;
}else {

Chapter 06 —PHP 159

echo "Error: " . $sql . "'
"" . $conn->error;

}

$conn->close();

- The will produce the following Result:

&~ O (D localhost/Last%20inserted%2010.php

MySQL connect OKNew record created successfully. Last inserted ID 1s: 2

— T ¥ id firstname lastname email reg_date
[0 g7 Edit %eCopy @ Delete 1 Chan Dara chandara168@gmail com 2022-11-21 13:25:13
[0 g7 Edit FeCopy @ Deleste 2 Lay Sokchea laysokchea@yahoo.com 2022-11-21 13:27:09

* DB #6: PHP MySQL Insert Multiple Records

Insert Multiple Records Into MySQL Using MySQLIi

Multiple SQL statements must be executed with the mysqli_multi_query() function.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)
VALUES ("Kim’, 'Sok’, 'kimsok.gmail.com®);";

$sgl .= "INSERT INTO MyGuests (firstname, lastname, email)
VALUES ('Sok', 'Chea’, 'sokcheal68@gmail.com");";

$sql .= "INSERT INTO MyGuests (firstname, lastname, email)
VALUES ("Toy', 'Kompheak®, 'toykompheak168@yahoo.com’)';

if ($conn->multi_query($sql) === TRUE) {
echo ""New records created successfully™;
}else {

echo "Error: " . $sql . "'
" . $conn->error;

}

$conn->close();

7>

160 Chapter 06 —PHP

- The will produce the following Result:

& @, () localhost/Insert%20Multiple.php

MySQL connect OKNew records created successfully

—T— ¥ id firstname lastname email reg_date

[J g7 Edit 3cCopy @ Delete 1 Chan Dara chandara168@gmail.com 2022-11-21 13:25:13
[g7 Edit %cCopy @ Delete 2 Lay Sokchea laysokchea@yahoo.com 2022-11-21 13:27:09
[J g7 Edit 3cCopy @ Delete 3 Kim Sok kimsok.gmail.com 2022-11-21 13:29:17
[J g7 Edit 3cCopy @ Delete 4 Sok Chea sokcheal68@gmail.com 2022-11-21 13:29:17
[J g7 Edit 3cCopy @ Delete 5 Toy Kompheak toykompheakl168@yahoo.com 2022-11-21 13:25:17

* DB #7: PHP MySQL Select Data
Select Data From a MySQL Database

$sql = ""SELECT id, firstname, lastname, email FROM MyGuests"";
$result = $conn->query($sql);

if ($result->num_rows > 0) {
/l output data of each row
while($row = $result->fetch_assoc()) {
echo "id: " . $row["id""]. " - Name: ** . $row["*firstname']. " ** .
$row[""lastname"]. "'
"";
}
}else {
echo "0 results™;

}

$conn->close();

- The will produce the following Result:

«~ O (D localhost/select¥%20all.php

1d: 1 - Name: Chan Dara

id: 2 - Name: Layv Sokchea
id: 3 - Name: Kim Sok

id: 4 - Wame: Sok Chea

id: 3 - Name: Toy Kompheak

Chapter 06 —PHP 161

* DB #8: PHP MySQL Use The WHERE Clause

Select and Filter Data From a MySQL Database

The WHERE clause is used to filter records.

The WHERE clause is used to extract only those records that fulfill a specified condition.

$sql = "SELECT id, firstname, lastname FROM MyGuests WHERE
lastname="Sokchea"";
$result = $conn->query($sql);

if ($result->num_rows > 0) {

/l output data of each row

while($row = $result->fetch_assoc()) {

echo "id: " . $row["id""]. " - Name: ** . $row[" firstname™]. " ** .

$row["'lastname]. "'
";

}
}else {

echo "0 results™;

}

$conn->close();

- The will produce the following Result:

~ O (i) localhost/My%205QL%20Where.php

1d: 2 - Name: Lay Sokchea

* DB #9: PHP MySQL Use The ORDER BY Clause
The ORDER BY clause is used to sort the result-set in ascending or descending order.
The ORDER BY clause sorts the records in ascending order by default. To sort the records

in descending order, use the DESC keyword.

$sgl = "SELECT id, firstname, lastname FROM MyGuests ORDER BY
lastname™’;

$result = $conn->query($sql);

162 Chapter 06 —PHP

if ($result->num_rows > 0) {
// output data of each row
while($row = $result->fetch_assoc()) {
echo "id: " . $row["id""]. " - Name: ** . $row[""firstname™]. " ** .
$row["lastname™]. "'
"";
}
}else {
echo "0 results™;

}

$conn->close();

- The will produce the following Result:

< @, (i) localhost/Order%:20By.php

1d: 4 - Name: Sok Chea

1d: 1 - Name: Chan Dara

1d: 5 - Name: Toy Kompheak
1d: 3 - Name: Kim Sok

1d: 2 - Name: Lav Sokchea

* DB #10: PHP MySQL Delete Data
The DELETE statement is used to delete records from a table:

$sql = "DELETE FROM MyGuests WHERE id=3"";

if ($conn->query($sgl) === TRUE) {
echo ""Record deleted successfully';
}else {

echo "Error deleting record: ** . $conn->error;

}

$conn->close();

Chapter 06 —PHP 163

- The will produce the following Result:

<~ G ':::' localhost/Delete%20Data.php

Record deleted successfully

—T— ¥ id firsthame lastname email reg_date

[J g7 Edit %Copy @ Delete 1 Chan Dara chandara168@gmail.com 2022-11-2113:25:13
[0 g7 Edit ¥:Copy @Delete 2 Lay Sokchea laysokchea@yahoo.com 2022-11-21 13:27:09
[J g7 Edit %Copy @ Delete 4 Sok Chea sokcheal168@agmail.com 2022-11-2113:2917
[0 g7 Edit %:Copy @ Delete 5 Toy Kompheak toykompheak168@yahoo.com 2022-11-21 13:29:17

* DB #11: PHP MySQL Update Data

The UPDATE statement is used to update existing records in a table:

$sql = "UPDATE MyGuests SET lastname="Rithy’ WHERE id=2"";

if (conn->query($sql) === TRUE) {
echo ""Record updated successfully*;
}else {

echo ""Error updating record: ** . $conn->error;

}

$conn->close();

- The will produce the following Result:

~ (O (i) localhost/Update.php

EFecord updated successtully

[] 47 Edit %cCopy @ Delete 2 Lay <Ri1hy) laysokchea@yahoo.com 2022-11-21 13:54:46

164 Chapter 06 -PHP

BB Summary

e Apache is the most commonly used Web server on Linux systems. Web servers are

used to serve Web pages requested by client computers. Clients typically request and
view Web pages using Web browser applications such as Firefox, Opera, Chromium,
or Internet Explorer.

e PHP (Hypertext Preprocessor) is known as a general-purpose scripting language
that can be used to develop dynamic and interactive websites. It was among the first
server-side languages that could be embedded into HTML, making it easier to add
functionality to web pages without needing to call external files for data.

e MySQL is a tool used to manage databases and servers, so while it's not a

database, it's widely used in relation to managing and organising data in databases.

® Questions

Why we need install Apache server?
What does it mean to install PHP?
What is MySQL How to you Install?

=R CORNIDR e

How can connect to MySQL database in PHP?

C= Exercises

1. Please write code connect to MySQL database called rttcDB in PHP.

Chapter 06 —PHP 165

2. Please write code create database called rttcDB in PHP.

3. Please write code to create table grade in PHP follow table below:

Field Type Null Key Default
ID Integer(3) Yes Primary Key Null
khmer Integer(3) Yes Null
math Integer(3) Yes Null
science Var(3) Yes Null

4. Please write code to insert 3 students into table grade in PHP follow table

below:

ID khmer math science comment

111 90 95 85 outstanding
112 100 95 75 kind warm
113 70 90 80 need to study hard

5. Please write code update table grade set math=60 with Id 112 in PHP.

6. Please write code select all from table grade in PHP.

Chapter 07

Data and Process

Data is digitalized and stored with various facts, making it the most important material to
understand and solve problems. Various data analysis tools can be used to improve students'
computing thinking skills, and this chapter uses a tool called Orange 3. Chapter 7 data and
processing learn various ways to load data as a basic step to analyze data using Orange 3. In
addition, to check the data in detail, it is expressed in a table form and columns and rows can be
selected and utilized according to conditions. Finally, to analyze the data, learn how to preprocess
it into the most suitable form and deal with the data yourself.

In this chapter, you will learn:
7.1. File
7.2. CSV File Import
7.3. Datasets
7.4. Data Table
7.5. Select Columns
7.6. Select Rows
7.7. Impute
7.8. Outliers

7.9. Pre-process

7.1. File

Reads attribute-value data from an input file.

7.1.1. Output

e Data: dataset from file.

Chapter 07 —Data and Processing 169

The File widget reads the input data file (data table with data instances) and sends the

dataset to its output channel. The history of the most recently opened files is maintained in

the widget. The widget also includes a directory with sample datasets that come pre-

installed with Orange.

The widget reads data from Excel (.xIsx), simple tab-delimited (.txt), comma-separated
files (.csv) or URLSs. For other formats see the Other Formats section below.

Figure 7.1 File

G B
(®) File: |irs.tab @ > a . .. & Reload @)
OuwrL: [@ v
Info (5]
150 instance(s), 4 feature(s), 0 meta attribute(s)
Classification; discrete dass with 3 values.
Columns (Double dick to edit) @
1 sepal length numeric feature
2 sepal width numeric feature
3 petal length numeric feature
4 petal width numeric feature
5 liris 5 nominal target Iris-setosa, Iris-versicolor, Iris-virginica
Browse documentation data sets | g (5] Report

Browse for a data file.

A

Reloads the currently selected data file.

Browse through previously opened data files, or load any of the sample ones.

Insert data from URL addresses, including data from Google Sheets.

Information on the loaded dataset: dataset size, number, and types of data features.

170 Chapter 07 —Data and Processing

6. Additional information on the features in the dataset. Features can be edited by
double-clicking on them. The user can change the attribute names, select the type
of variable per each attribute (Continuous, Nominal, String, Datetime), and choose
how to further define the attributes (as Features, Targets or Meta). The user can also
decide to ignore an attribute.

7. Browse documentation datasets.

8. Produce a report.

Example:

Most Orange workflows would probably start with the File widget. In the schema below,
the widget is used to read the data that is sent to both the Data Table and the Box Plot
widget.

Figure 7.2 File Link to Data and Box plot Table

M
D Data Table

O =

File

HIH+
HIH++

Box plot

7.1.2. Loading your data

1. Orange can import any comma, .xIsx, or tab-delimited data file or URL. Use the File
widget and then, if needed, select class and meta attributes.

2. To specify the domain and the type of the attribute, attribute names can be preceded by
a label followed by a hash. Use c for class and m for meta attribute, | to ignore a column,
and C, D, S for continuous, discrete and string attribute types. Examples: C#mpg,
mS#name, i#dummy.

3. Orange’s native format is a tab-delimited text file with three header rows. The first row
contains attribute names, the second the type (continuous, discrete or string), and the

third the optional element (class, meta or time).

Chapter 07 —Data and Processing 171

Figure 7.3 Sample Format Text File

H ©- = sample-head xlsx - Excel T H - O X
HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW ADD-INS TEAM r
Al A f\ mD#function v
A B C D E F G H [+
1 |mD#‘Function.|mS#gene spo-early spo-mid c#theat 0 i#theat 10 i#heat 20
2 |Proteas YDR427TW 0.301 0.546 -0.009 0.024
3 |Proteas YGLO4BC 0.208 -0.061 -0.039 0.003
4 |Resp YBRO3SW -0.179 -0.219 -0.097 -0.011
5 |Ribo YKL180W -0.085 -0.161 -0.061 -0.265 -0.419
6 |Ribo YHRO21C -0.216 -0.253 -0.228 -0.168 -0.228
7 |Resp YDR178W 0.017 0.07 0.058 0.286 0.205
8 |Resp YLLO41C 0.115 0.033 0.262 0.054
9 |Resp YOROG5W 0.005 -0.023 -0.038 0.222 0.088
10
11
12
13 =
Untitled.tab ® [»
READY] M -—F—+ 100%

Read more on loading your data here.

7.1.3. Other Formats

Supported formats and the widgets to load them:

e distance matrix: Distance File

e predictive model: Load Model

e network: Network File from Network add-on

e images: Import Images from the Image Analytics add-on

e text/corpus: Corpus or Import Documents from Text add-on
e single-cell data: Load Data from Single Cell add-on

e several spectroscopy files: Multifile from Spectroscopy add-on

7.2. CSV File Import

Import a data table from CSV formatted file.

7.2.1. Output
e Data: dataset from the .csv file

e Data Frame: pandas DataFrame object

172 Chapter 07 —Data and Processing

The CSV File Import widget reads comma-separated files and sends the dataset to its output
channel. File separators can be commas, semicolons, spaces, tabs, or manually-defined

delimiters. The history of the most recently opened files is maintained in the widget.

Data Frame output can be used in the Python Script widget by connecting it to the in-object

input (e.g. df = in object). Then it can be used as a regular DataFrame.

7.2.2. Import Options

The import window is where the user sets the import parameters. Can be re-opened by

pressing Import Options in the widget.

Right-click on the column name to set the column type. Right-click on the row index (on

the left) to mark a row as a header, skipped or a normal data row.

Figure 7.4 CSV File Import

® CSY File Import
Encoding = Unicode (UTF-8) L1
Cell delimiter Comma : 2]
Quote character || [V |
Number separators: Grouping: 4 Decimal: . | v
Column type (3]
1 2 3 4 5
1 sepal length sepal width petal length petal width iris
2 |51 3.5 1.4 0.2 Iris-setosa
3 49 3.0 1.4 0.2 Iris-setosa
4 47 3.2 1.3 0.2 Iris-setosa
5 46 31 1.5 0.2 Iris-setosa
& 5.0 3.6 1.4 0.2 Iris-setosa
7 564 3.9 1.7 0.4 Iris-setosa
8 46 3.4 1.4 0.3 Iris-setosa
g 5.0 3.4 1.5 0.2 Iris-setosa
10 4.4 29 1.4 0.2 Iris-setosa
1 4.9 31 1.5 0.1 Iris-setosa
12 54 37 1.5 0.2 Iris-setosa
4]

Reset

1. File encoding. The default is UTF-8. See the Encoding subchapter for details.

2. Import settings:
o Cell delimiter:
— Tab
— Comma

— Semicolon

Restore Defaults

Cancel | S

Chapter 07 —Data and Processing 173

— Space

— Other (set the delimiter in the field to the right)

Quote character: either “ or °. Defines what is considered a text.
Number separators:

— Grouping: delimiters for thousands, e.g. 1,000

— Decimal: delimiters for decimals, e.g. 1.234

3. Column type: select the column in the preview and set its type. Column type can be set

also by right-clicking on the selected column.

Auto: Orange will automatically try to determine column type. (default)
Numeric: for continuous data types, e.g. (1.23, 1.32, 1.42, 1.32)
Categorical: for discrete data types, e.g. (brown, green, blue)

Text: for string data types, e.g. (John, Olivia, Mike, Jane)

Datetime: for time variables, e.g. (1970-01-01)

Ignore: do not output the column.

4. Pressing Reset will return the settings to the previously set state (saved by pressing OK

in the Import Options dialogue). Restore Defaults will set the settings to their default

values. Cancel aborts the import, while OK imports the data and saves the settings.

7.2.3. Widget

The widget once the data is successfully imported.

CSV File Import

(1}
File: iris.csv
Info (2}
150 rows, 4 features, 1 meta
(3]
Import Options... Cancel | Reload |

?

1. The folder icon opens the dialogue for importing the local .csv file. It can be used to

either load the first file or change the existing file (load new data). The File dropdown

stores paths to previously loaded data sets.

Information on the imported data set. Reports on the number of instances (rows),

variables (features or columns), and meta-variables (special columns).

174 Chapter 07 —Data and Processing

3.

Import Options re-opens the import dialogue where the user can set delimiters,

encodings, text fields, and so on. Cancel aborts data import. Reload imports the file

once again, adding to the data any changes made in the original file.

7.2.4. Encoding

The dialogue for settings custom encodings list in the Import Options - Encoding dropdown.

Select Customize Encodings List. . . to change which encodings appear in the list. To save

the changes, simply close the dialogue. Closing and reopening Orange (even with Reset

widget settings) will not reset the list. To do this, press Restore Defaults. To have all the

available encodings in the list, press Select all.

Figure 7.5 Customize Encoding List

(<<

Example:

D B Customize Encodings List

Unicode (UTF-8)

Unicode (UTF-16)

Unicode (UTF-16LE)
Unicode (UTF-16BE)
Unicode (UTF-32)

Unicode (UTF-32LE)
Unicode (UTF-32BE)
Unicode (UTF-7)

English (US-ASCII)

Western Europe (ISO Latin 1)
Wactarn Eurana (ICN_RAKAQ_1K)

Restore Defaults Select all

CSV File Import works almost exactly like the File widget, with the added options for

importing different types of .csv files. In this workflow, the widget read the data from the

file and sends it to the Data Table for inspection.

Info
$ 150 instances (no missing values)
e 1
[~ 4 features (no missing values) >
D No target variable. 3
- 1 meta attribute (no missing
li values) 4
o ’ 2
tx) \ D 6
Eﬁi \ Variables >
/ i Tuike ¥ Show variable labels (if present) . o
ata Tal ievali i
z CSV File Import VlsuahzeAnumenc values 9
v Color by instance classes
S 10
e) CSV File Import i "
2
Encoding Unicode (UTF-8) B 33
3 Order the
15
Cell delimiter Comma B aatically 10

Quote character '{ ﬁ

Number separators: Grouping: B4 oecimal: . [~}
Column type
1 2 3 4 5

1 sepal length sepal width petal length petal width iris
2 51 35 14 0.2 Iris-setosa
3 49 3.0 1.4 0.2 Iris-setosa
4 a7 32 13 0.2 Iris-setosa
5 46 31 1.5 0.2 Iris-setosa
6 5.0 36 1.4 0.2 Iris-setosa
7 54 3.9 17 0.4 Iris-setosa
R AR 24 14 na Irie-cotnea

Reset Restore Defaults Cancel

7.3. Datasets

,)/ = Load a dataset from online repository.

7.3.1. Output

Data: output dataset

Chapter 07 —Data and Processing 175

iris

Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa
Iris-setosa

sepal length sepal width petal length potal width

51 35 1.4 0.2
49 3 1.4 0.2
4.7 3.2 1.3 0.2
a6 31 1.5 0.2

5 3.6 1.4 0.2
5.4 3.9 17 0.4
46 3.4 1.4 0.3

5 3.4 15 0.2
4.4 2.9 1.4 0.2
4.9 31 15 0.1
5.4 37 15 0.2
48 3.4 1.6 0.2
4.8 3 1.4 01
43 3 11 01
5.8 4 1.2 0.2
5.7 a4 15 0.4

The datasets widget retrieves the selected dataset from the server and sends it to the output.

The file is downloaded to the local memory and thus instantly available even without an

internet connection. Each dataset is provided with a description and formation on the data

size, number of instances, number of variables, target, and tags.

Figure 7.6 Dataset File

ene Data Sets

info L} Titke A Size Instances

22 data sets Iris 45K8 150

Nt et e Tl Kickstarter p... 2141K8 1163
Poker Hand 28.9M8 1025010
Sailing 455 bytes 20
Titanic 441KB 2m
Traffic accid... 4.3MB 17931
Traffic aceid... 28M8 32857
Traffic signs 3.8KB 40
Wine 10.7 KB 178
Wine quality ... 82.2KB 1599
Wine quality ... 258.1KB 4898

Description @

Kickstarter projects (2016)

Variables

5
%
10

3

4
8
13

Target

[@ categorical
[categorical
[@ categorical
[@ categorical
[@ categorical

categorical
categorical
[numeric
[numeric

Tags 2]

synthetic
tree, synthetic

location, date, traffic
location, date, traffic
images

wine
wine

Basic profiling of Kickstarter project pages at the time of the start of the campaign. The class label
records if the project was founded. The data is on a small sample of Kickstarter projects whose

campaigns started from January ta April, 2016, Even though the attributes contain very basic information
about the web pages, like the number of videos and images included, it is surprising that these are
sufficient for solid prediction of success of the project.

176 Chapter 07 —Data and Processing

to the local memory.

Information on the number of datasets available and the number of them downloaded

Content of available datasets. Each dataset is described with the size, the number of

instances and variables, the type of the target variable, and tags.

If Send Data Automatically is ticked,

Formal description of the selected dataset.

the selected dataset

automatically. Alternatively, press Send Data.

Example:

Orange workflows can start with Datasets widget instead of the File widget. In the

example below, the widget retrieves a dataset from an online repository (Kickstarter data),

which is subsequently sent to both the Data Table and the Distributions.

LK]
Info

22 data sets
4 data sets cached

B~ ez ouE MY -

Data Tabl
Data Sets .I- Send Data Automatically
Distributi
Infa.

1183 instances Fund URL Title. Year
T 1 [ag hitps:/fwww.... Pixelstart:C... 2016
Discrete class with 2 values (no L. hilps/ww=ylismertishopl Y 12016
missing values) 3 [no https:/fwww.... Minimal Hau.. 2016
4 meta atributes (4.0% missing F hitps:/fwww.... NeoM: Alteri.. 2016
values) 5 no https:/fwaw.... Nintendo NE.. 2016
6 |mo hitps:/fwww.... Dayand Nig.. 2016
e 7 [no htps:/fwaw.... Fundan Art.. 2016
 Show variable labels (if present) - 1o, M [WD | 25T
Visualize numeric values * N (o |CRED W | L)
v Color by instance classes 1 [yes https://www... Underthe H.. 2016
1 |yes hitps:/fwww... KOKORO 2016
Selectian 12 |yes https:/fwww.... Draw Cool .. 2016
 Select full rows 13 [yes nttps://www.... Ellefortheco... 2016
1 |yes hitps:/fwww... PT Apparel 2016
Restare Original Order 15 |yes hitps:/fwww.... Epocha - Ha.. 2016
16 |yes https:/fwaw.... The Little AB.. 2016
Report v |yes hetps:/fwww... Burl&Fur 2016
- T 15 [yes hitps://www.... Pens &Pedals 2016
18 was rtnss [RCLI Mnstrat MR

7.4. Data Table

Data Sets

v Title Size Ingtances Variables Target Tags

Car Evaluation 50.7 KB 1728 6 categorical synthetic
* llegal waste 28 MB 13165 25 location, date, ecology
+ grades 265 bytes 12 2 @ None clustering, small
*+ Kickstarter p... 2141 KB 163 15 (3 categorical

Abalone 187.5 KB 4177 8 [numeric
Deseription

Kickstarter projects (2016)

ing of Kickstarter project pages at the time of the start of the campaign. The class \belnec rds it
founded. The data is on a small sample of Kickstarter pr tarted

aigns
January ta April, 2016. Even though the attributes cantain very basic information about the. wehp ges,
like the number of v\deus and images included, it is surprising that these are sufficient for solid prediction of
success of the project.

Month Type Has FB.
Apr Art 1
varlable 180
Type ® yes
HasFg 160
140
@ ceal 120
[puration
Pledge Level
(0 Pledge Levels —
[Min Pledge Tiers 2
M hiav Bladna Tinre L
El
3 80
Precision «
2 50 60
Bin numeric variables into 10 bins
40
Group by
~ 20
@ Funded 5 I
Show relative frequencies
ql |

Show probabilities: (None)

is communicated

.
AT Crafis Design Gadgets Softwars
Type

Save Image Report

Displays attribute value data in a spreadsheet in table form.

L
Video

Chapter 07 —Data and Processing 177

7.4.1. Input

e Data: input dataset

7.4.2.0utput
e Selected Data: instances selected from the table
The Data Table widget receives one or more datasets in its input and presents them as a
spreadsheet. Data instances may be sorted by attribute values. The widget also supports

manual selection of data instances.

Figure 7.7 Data Table File

(2] untifled | untitied

150 instances (no missing values)
4 features (no missing values)

Discrete dass with 3 values (no
missing values)

No meta atiributes

sepallength sepalwidth petallength petal width
3.200 5,100 2000

3.000 5,500 1800

3.000 . 2000

2900 . 1300

L L —

3.000 . 1.400
1.400

g8

=

B
g

g

8

Variables €

Show variable labels (if present)
Visualize continuous values
Color by instance dasses

L
[r=]

—1
=
o

o

S
o
2
=

&=
o
9
=

5
o
2
=

Selection @
Select full rows

]
wn
o
]
=

E
o
g
g

B
wn
o
2
=

g

i

3 5

g

Restore Origingl Order @ |

g

Report [E] |

g

g

Send Automatically L7}

1. The name of the dataset (usually the input data file). Data instances are in rows and
their attribute values in columns. In this example, the dataset is sorted by the attribute
“sepal length”.

2. Info on current dataset size and number and types of attributes

3. Values of continuous attributes can be visualized with bars; colors can be attributed to
different classes.

4. Data instances (rows) can be selected and sent to the widget’s output channel.

5. Use the Restore Original Order button to reorder data instances after attribute-based

sorting.

178 Chapter 07 —Data and Processing

6. Produce a report.

7. While auto-send is on, all changes will be automatically communicated to other widgets.
Otherwise, press Send Selected Rows.

Example:

We used two File widgets to read the Iris and Glass dataset (provided in the Orange
distribution) and send them to the Data Table widget.

[

File

N

File (1)

Oqa

o?°

g } Selected Data — Data { E

Data Table Data Table (1)

Selected data instances in the first Data Table are passed to the second Data Table. Notice

that we can select which dataset to view (iris or glass). Changing from one dataset to

another alters the communicated selection of data instances if Commit on any change is

selected.

File (iniz)

wraRol °

0 } Data Tatie

File (Glass)

Info

Data Table*

Data Table (1)

_@®—®

Data Table (1)

214 nstances {ro missing vakies)

8 features (o mssing values)

Discret cass mith § vaiuss (o
vaes)

g
Ho meta alirbutes

\eries
7] Show varisbie abels {f present)
] visusize continusus vakes
7] ol by nstance ciasses

‘selection
] seact ful rowa

15 matances (o mssng vokaes)

9 faatures (o masig valies) 1 1520

Discrete cas it § vales (o 2 1321

masng vahues)

Homata atbutes 3
4
s

&

1519
151
1518

varsties

7 show varstie el (Fovesent) |
7] Vuskze contrnsous vaoes

[Caor by instance dasses

Selection
[Seect full raws.

13380
12850
12470
400
13790
14450
14.0%0
14400
1490
14150
14.560
17380
135
14320

B0

@A\

Chapter 07 —Data and Processing 179

7.5. Select Columns

Manual selection of data attributes and composition of the data domain.

7.5.1. Input

e Data: input dataset

7.5.2. Outputs
e Data: dataset with columns as set in the widget.

The Select Columns widget is used to manually compose your data domain. The user can
decide which attributes will be used and how. Orange distinguishes between ordinary
attributes, (optional) class attributes, and meta-attributes. For instance, for building a
classification model, the domain would be composed of a set of attributes and a discrete
class attribute. Meta attributes are not used in modelling, but several widgets can use them
as instance labels.

Orange attributes have a type and are either discrete, continuous or a character string. The

attribute type is marked with a symbol appearing before the name of the attribute (D, C, S,
respectively).

Figure 7.8 Select Columns

&l Select Columns - B
Available Variables @ Features a
Filter age
U
rest SBP g QEﬂde.rd
D | fasting blood sugar » 120 EXErcin ﬁﬂg
) rest ECG ST by exercise
max HR major vessels colored
cholesterol & thal
[chest pain
Down
Target Variable €)
|E' diameter narrowing
Meta Attributes €Y
Up
[slope peak exc 5T
Down
Report @ Reset (6] © send Automatically

180 Chapter 07 —Data and Processing

Left-out data attributes that will not be in the output data file
Data attributes in the new data file

Target variable. If none, the new dataset will be without a target variable.

A e

Meta attributes of the new data file. These attributes are included in the dataset but are,
for most methods, not considered in the analysis.

Produce a report.

Reset the domain composition to that of the input data file.

Tick if you wish to auto-apply changes of the data domain.

© N o O

Apply changes of the data domain and send the new data file to the output channel of

the widget.

Example:

In the workflow below, the Iris data from the File widget is fed into the Select Columns
widget, where we select to output only two attributes (namely petal width and petal length).
We view both the original dataset and the dataset with selected columns in the Data Table

widget.

L] Select Columns* - b
File Edit View Widget Options Help
- 0 Data Table - g
m E Info .
E) iris sepallength sepalwidth petal length petal width
2 4features (no missing values) 1 [510 B e |0 0.200
na Data Table Discrete dass with 3 values (no 2 _ 4,900 3.000 1.400 0200
RIS missing values) -— — - -
& 0 e s sl 4 T 00
ey N TR
i File m Q Variables s [3,600 1400 0200
—_— a— —— e -
-5 Shom vaie bod (Frmen) |5 [aigrg | 50 2900 1700 0400
— — | -
Select Columns Data Table (1} Cr T 3 7 Jrissetoss | 2500 3400 1400 0300
Colo by instance dasses = E— - =
3 R
N TR
Select full rows 10 _ 4900 3.100 1500 0100
Dl m w
=] Data Table (1) - B - _ 4800 3400 1600 0.200
- — = &
o ifis petal length petalwidth A E 3000 ik 0100
. - —— -
150 instances (no missing values) 1.400 0200 " _ 4300 3000 1100 0100
2 features (no miseing values) 1 0. — .
@ Discrete dss with 3 vaues (o e 020 15 Jhissetosa 320 FLC N 0200
missing values) = -
Nometaattes fisetoss 1200 00 | esstosa U 00 a0 150 o0
[v e e
- -
Show variable labels (Fpresent) s 1700 0400 by .
) -
SRR SIS _ 1400 0300 Available Varizbles Features
o o = o
= 5
Selection _ 1400 0200 @ sepal length < @ petal width
Select full rows _ 1500 0100 @ sepalvidn T
- - Target Variable
1.600 0200
E— >
[R
-
1,100 0.100 Meta Attributes
isseoss 1
B0 o0 :
[
[T =
: u
[
= =
v
Send Automatically _ HOD 0‘ 300 M Report | ‘ Reset ‘ Send Automatically

Chapter 07 —Data and Processing 181

For a more complex use of the widget, we composed a workflow to redefine the
classification problem in the heart- disease dataset. Originally, the task was to predict if the
patient has a coronary artery diameter narrowing. We changed the problem to that of gender
classification, based on age, chest pain and cholesterol level, and informatively kept the

diameter narrowing as a meta attribute.

Figure 7.9 Select Columns and Data Table File

Select Columns* - o # Confusion Matrix = =

Predicted

Cla:

Tree
Random Forest Classificatic
female 10 87 97

m Data Table E male 8 198 206

female male b3

D 3 18 285 303
Select Columns Show

Number of instances

Test & Score Confusion Matrix Select Correct

Select

& Data Table

Select Misdlassifi gender diameter narrowin: 9

Clear Selection

i‘h cutput

Predictions
[Probabiities

female

female
i 2 Select Columns = 3 female
Randorm Forest Selection o |male
vailable Varizbles
Classification - [] select full rons 10 |male
Fiter @ age
Up
[v ||gdeepn 1 male
chol

rol 12 female

13 |male
14 |male
15 |male

Restore Original Order o
17 |male

e R R = R T T R = RS

Target variable Report:
12 |male

Meta Attributes

@ diameter namowing

7.6. Select Rows

Selects data instances based on conditions over data features.

7.6.1. Inputs

e Data: input dataset

7.6.1. Output
e Matching Data: instances that match the conditions
e Non-Matching Data: instances that do not match the conditions
e Data: data with an additional column showing whether a instance is selected

This widget selects a subset from an input dataset, based on user-defined conditions.

Instances that match the selection rule are placed in the output Matching Data channel.

182 Chapter 07 —Data and Processing

Criteria for data selection are presented as a collection of conjunct terms (i.e. selected items
are those matching all the terms in ‘Conditions’).

Condition terms are defined by selecting an attribute, selecting an operator from a list of
operators, and, if needed, defining the value to be used in the condition term. Operators are

different for discrete, continuous and string attributes.

Figure 7.10 Select Rows

M4 Select Rows = =

Conditions ¢

(1) fuel-type ¥ |is not * | gas =
[make T |is ¥ | toyota =
price > | is below = | ZSDDﬂ|

Add Condition | |Add All Variables| | Remaove All

Data o Purging 5]
In: ~205 rows, 26 variables Femove unused features

Out: ~3 rows, 13 variables Remove unused dasses

@ FReport Send automatically E) Send

Conditions you want to apply, their operators and related values

Add a new condition to the list of conditions.

Add all the possible variables at once.

Remove all the listed variables at once.

Information on the input dataset and information on instances that match the condition(s)
Purge the output data.

N o g s~ w D E

When the Send automatically box is ticked, all changes will be automatically
communicated to other widgets.

8. Produce a report.

Any change in the composition of the condition will update the information pane (Data
Out).

Chapter 07 —Data and Processing 183

If Send automatically is selected, then the output is updated on any change in the

composition of the condition or any of its terms.

Example:

In the workflow below, we used the Zoo data from the File widget and fed it into the Select
Rows widget. In the widget, we chose to output only two animal types, namely fish and

reptiles. We can inspect both the original dataset and the dataset with selected rows in the

Data Table widget.
= Select Rows* =0
=) Data Table - o
E:_} 16 features ('\;n-sw\a values) 3 1 memea aardvack 1 0 0
& poctompirrss i 2 mammal antelope
[1 meta attrbute (no mssng valoes) 3 feh bass.

Variables S mammal boar 1 0
(V] Show voriable labels (f present) 6 |mammsl buffalo 1 0
D V] Vauake continuous values

! Color by instance dasses

Data Table

0
|

Selecton

V] Select fll rows 10 o vy 3 0 o 3
Select Rows Data Tavte
selected

¢
a
g;si §3
FEEfiES

Select Rows -8 15 linvertebeate crab
Condtions 16 aaffish
17 b row
® type = |is one of - fish, reptile il Report
15 imammal o 1 0 0 1
= Data Table (selected) - oliEm
info
nem " he
18 ratances (no mssng vakues) P > 99" aquat: predate thed
10 features (no mssng values) 1 fsh bass 1 1 1
Decrete dass with 2 values (no 1 0
missng values) i o
1 meta attrbute (no missing vakues) fish catfish 1 1 1
fish chub 1 . :
= = Vortables 5 ek dogfish 1 1 1
) e /! Show vaneble lsbels (f present) 5 [fieh haddock 1 0 1
] Visusize contruous vakues
Data Purgng fish hering 1 1 1
] Color by instarce dssses
In: ~101 rows, 18 variobies) Remove unused features s |k pike 1 1 1
Out: ~18 rows, 12 varisbles Vi Remove unused dasses Selecton 9 |fish piranhs 1 1 1
V] Select &l rows. 10 reptile pitviper 1 0 1 1
Report V! Send automatcaly 11 fish seshorse 1 1 0 1
12 feptile seasnake 0 1 1 1
13 eptile showworm 1 0 1 1
14 [fish sole 1 1 0 1
15 fish stingray 1 1 1 1
Restore Orignal Order 16 reptile tortoise 1 0 0 0
17 reptile tustars 1 0 1 1
Report
12 fish tuna 1 1 1

In the next example, we used the data from the Titanic dataset and similarly fed it into the
Box Plot widget. We first observed the entire dataset based on survival. Then we selected
only first class passengers in the Select Rows widget and fed it again into the Box Plot.
There we could see all the first class passengers listed by their survival rate and grouped by

gender.

184 Chapter 07 —Data and Processing

Select Rows* - B

Box Plat (Original Data) = =

Box Plot (riginal
File Data)

-

+ 4 _—mm—
:
B é; one 0 10 20 30 40 50 60 70 80 a0 100
status.

Select Rows Box Plot (Selected)

@/ g © @@@ar 2

Box Plot (Selected) = &
i
a
@ sex
= Select Rows = E @ survive, d
Conditions
@ statu - v | first =
0 yes
female I ——
o ves
Grouping mal —
None R
Add Al Variables| | Remove Al 29¢ 0 10 20 30 40 50 60 70 80 90 100
sex
vvvvvvv o
Data Purging
In: ~2201 rows, 4variables Remove unused features
Out: ~325 rows, 3 variables Remove unused dasses
Display
Report Send automatically send Stretch bars
Save Image Report
7.7. Impute

7.7.1. Inputs

e Data: input dataset

e Learner: learning algorithm for imputation

7.7.2. Outputs
e Data: dataset with imputed values

Some of Orange’s algorithms and visualizations cannot handle unknown values in the data.
This widget does what statisticians call imputation: it substitutes missing values by values

either computed from the data or set by the user. The default imputation is (1-NN).

Chapter 07 —Data and Processing 185

Figure 7.11 Impute File
(4 Impute ?

Default Method 1]

() Don'timpute

() Average/Most frequent

() As a distinct value

(®) Model-based imputer (simple tree)
() Random values

() Remove instances with unknown values

Individual Attribute Settings @ (3]

@ fuel-type | () Default (above)
[aspiration () Don'timpute
@ num-of-doors
@ body-style
@ drive-wheels () As a distinct value
[engine-location
wheel-base _
length (_) Random values

width (@) Remove instances with unknown values
height -> drop
curb-weight

[engine-type 0,000 s

() Average/Most frequent

(") Model-based imputer (simple tree)

() value

2 T?T:?ft.c{lmders v Restore All to Default (4]
(5] Report [Apply automatically Apply (6]

In the top-most box, Default method, the user can specify a general imputation

technique for all attributes.

Don’t Impute does nothing with the missing values.

Average/Most-frequent uses the average value (for continuous attributes) or the
most common value (for discrete attributes).

As a distinct value creates new values to substitute the missing ones.
Model-based imputer constructs a model for predicting the missing value, based
on values of other at- tributes; a separate model is constructed for each attribute.
The default model is 1-NN learner, which takes the value from the most similar
example (this is sometimes referred to as hot deck imputation). This al- gorithm can
be substituted by one that the user connects to the input signal Learner for
Imputation. Note, however, that if there are discrete and continuous attributes in the
data, the algorithm needs to be capable of handling them both; at the moment only
1-NN learner can do that. (In the future, when Orange has more regressors, the
Impute widget may have separate input signals for discrete and continuous models.)
Random values compute the distributions of values for each attribute and then

impute by picking random values from them.

186 Chapter 07 —Data and Processing

e Remove examples with missing values and removes the example containing
missing values. This check also applies to the class attribute if Impute class values
is checked.

2. It is possible to specify individual treatment for each attribute, which overrides the
default treatment set. One can also specify a manually defined value used for imputation.
In the screenshot, we decided not to impute the values of “normalized-losses” and
“make”, the missing values of “aspiration” will be replaced by random values, while
the missing values of “body-style” and “drive-wheels” are replaced by “hatchback™ and
“fwd”, respectively. If the values of “length”, “width” or “height” are missing, the
example is discarded. Values of all other attributes use the default method set above
(model-based imputer, in our case).

The imputation methods for individual attributes are the same as default methods.
Restore All to Default resets the individual attribute treatments to default.

Produce a report.

o o~ w

All changes are committed immediately if Apply automatically is checked. Otherwise,

Apply needs to be ticked to apply any new settings.

Example:

To demonstrate how the Impute widget works, we played around with the Iris dataset and
deleted some of the data. We used the Impute widget and selected the Model-based imputer
to impute the missing values. In another Data Table, we see how the question marks turned

into distinct values (“Iris-setosa, “Iris-versicolor”).

Chapter 07 —Data and Processing 187

- Impute* = =
[=] Data Table = B
m , ,
D e s sepal length sepal width petal length petal width -
L{_=" 4 fogtres (o missing vakus) u [4400 3.200 1.300 0.200
Data Table Discrete dlass with 3 values (2.0% u 5.000 3.500 1,600 0.600
! v . o o
. (o a5 7 5.100 3.800 1900 0.400
e D Ei D s [430 1000 1400 0.300
F H veriables 47 lismsetosa 5100 3800 1600 0200
S File Aenpute Data Table (mputed) 7] Show variable labels (fpresent) | 1o [Eiemie 4500 300 1400 0.200
) Veuekze contruous veves «» [s3m 370 s 0200
o [E i 5o [iteeten 000 3300 1400 0200
Selecton 51 7 000 3200 4700 1.400
Impute g~ | r - o
7 Select fll rones 2 T &0 2200 4500 1.500
fouit 53 [EEveesior 5500 3,100 4900 1.500
Defait Method Restore Orignal Order - — — .
Don'timpute 54 kis-vessicolor | 3500 230 amo 1300
AvessoeMost frequnt Beport, 55 [Wavemeolor 6500 2800 4800 1.500
As 8 dstnct vakoe - 56 lis vemsicolor | 5.7%0 L80 4500 10
% e L. _— - "
% =) e + oon e e o
Random values
Rlamove instances with oknonn values) Data Table (Imputed) o
Indridual Attribuste Se Info
Al S _—— | s sepallength sepalwidth petallength petal width
a sepe: Iu;g:) Defaut (sbove) 4 features (o missing values) 23 |inssetoss 4400 320 1.300 0200
g s:a‘ :- :h Don'timpute Discrete dass with 1 vabes fno u 5,000 3.500 1,500 0.600
petal leng issing vaes) § | 3 3 —
@ petal width Remae st Regient i Fll == 5.100 3800 1900 0.400
8 iris -> model (simple tree) As 5 dutict value = | 4400 3000 1400)
8 Model-based imputer (smple tee) Veriskies A7 iis-setos 5100 2800 1,600 0200
ERR] show varisbie lbels (foresent) | 4 [eSeaign 4500 3200 1.400 0200
Remove nstances with Lriknonn vaes] Visusize continuous values » B { 5.300 1700 1.500 0200
- o Iris-setosa
w 4] Color by instance dasses » B 5,000 3300 1,400 0.200
Trs-setosa - . |
Selecton 51 Iris-versicolor T.000 3200 4700 1400
Restore All to Default [¥] Select full rows 52 [Eekor 6.0 3.200 4.500 1500
:h'!- versicolar :E.ECD 3.100 4300 1.500
— Restore Original Order = — — —
Rt) ey mfonscy ot o O ame -~ o
Report e [2 4500 1.500
) 'Y B3 2800 4300 1300
5} | Lz a0 2300, FET 2500,

7.8. Outliers

The outlier detection widget is used to classify the dataset.

7.8.1. Inputs

e Data: input dataset

7.8.2. Outputs

e Qutliers: instances scored as outliers

e Inliers: instances not scored as outliers

e Data: input dataset appended Outlier variable
The Outliers widget applies one of the four methods for outlier detection. All methods apply
classification to the dataset. One-class SVM with non-linear kernels (RBF) performs well
with non-Gaussian distributions, while the co-variance estimator works only for data with
Gaussian distribution. One efficient way to perform outlier detection on moderately high
dimensional datasets is to use the Local Outlier Factor algorithm. The algorithm computes
a score reflecting the degree of abnormality of the observations. It measures the local

density deviation of a given data point with respect to its neighbours. Another efficient way

188 Chapter 07 —Data and Processing

of performing outlier detection in high-dimensional datasets is to use random forests

(Isolation Forest).

Figure 7.12 Outliers

© Outliers
Method @

Local Outlier Factor

Parameters @

Contamination:

Neighbors: 20 o
Metric: Euclidean u
(3}

_ 0O e
2 B|Hwo: [>90:

1. Method for outlier detection:
e One Class SVM
e Covariance Estimator
e Local QOutlier Factor
e Isolation Forest
2. Set parameters for the method:
e One class SVM with the non-linear kernel (RBF): classifies data as similar or
different from the core class:
— Nu is a parameter for the upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors
— Kernel coefficient is a gamma parameter, which specifies how much influence
a single data instance has
e Covariance estimator: fits ellipsis to central points with Mahalanobis distance
metric:
— Contamination is the proportion of outliers in the dataset
— Support fraction specifies the proportion of points included in the estimate
e Local Outlier Factor: obtains local density from the k-nearest neighbours:
— Contamination is the proportion of outliers in the dataset

— Neighbours represent number of neighbours

Chapter 07 —Data and Processing 189

— Metric is the distance measure
e Isolation Forest: isolates observations by randomly selecting a feature and then
randomly selecting a split value between the maximum and minimum values of the
selected feature:
— Contamination is the proportion of outliers in the dataset
— Replicable training fixes random seed
3. If Apply automatically is ticked, changes will be propagated automatically.
Alternatively, click Apply.
4. Produce a report.
5. Number of instances on the input, followed by a number of instances scored as inliers.

Example:

Below is an example of how to use this widget. We used a subset (versicolor and virginica
instances) of the Iris dataset to detect the outliers. We chose the Local Outlier Factor
method, with Euclidean distance. Then we observed the annotated instances in the Scatter
Plot widget. In the next step we used the setosa instances to demonstrate novelty detection
using Apply Domain widget. After concatenating both outputs we examined the outliers in
the Scatter Plot (1).

190 Chapter 07 —Data and Processing

© @
24 e o
QI 000
22 [o)o]
Qoo O
Method 2f [€135)
Local Outier Factor £ @ 0 o
% 8 ®o @ooe o
Paramaters] . Oo "
16
Contamination: © emaem
Zad
m 10% 14 © ©a® o
Neighbors: 20 g
e Metric: Euclidean 12 @ee O Yes
5y A oNo
e 1 00 @
gt v 5 6
Scatter Plot
o z petal length
S~ 100 20 o
11 | 41100
Matching D,
1.8 ‘ i
D g Data Data - Primary Dat ok ™
E.l 3 = = &
£ File Select Rows "i Concatenate Scatter Plot (1)
8 >
2, b
& g
Conditions
@ iris 2 isoneof S| isversicolor, is-vig.
v Apply Domain
[] [] Scatter Plot (1)
Add Condition Add All Variables Remove All 24
22
Data Purging
2t
In: ~150 rows, 5 variables Remove unused features
Out: ~100 rows, 5 variables Remove unused classes 18
16
£
Y 3 14
3
3 12
3
g
1
08
06
04 Q @) ¢ 9 Yes
02 (:Eaép 8] o No
i 2 3 4 5 G 7
petal length
2BB| D B

7.9. Pre-process

Pre-process data with selected methods and offers several preprocessing methods that can
be combined in a single preprocessing pipeline.

7.9.1. Inputs

e Data: input dataset

7.9.2. Outputs

e Pre-processor: pre-processing method

e Pre-processed Data: data pre-processed with selected methods
Pre-processing is crucial for achieving better-quality analysis results. The Pre-process
widget offers several pre-processing methods that can be combined into a single pre-

processing pipeline. Some methods are available as separate widgets, which offer advanced
techniques and greater parameter tuning.

Chapter 07 —Data and Processing 191

Figure 7.13 Impute Missing Values Preprocess

Q [] Preprocess

Preprocessors L1) Impute Missing Values (2]

-#= Discretize Continuous Variables
L . . Average/Most frequent
#= Continuize Discrete Variables o / 4

B Impute Missing Values Replace with random value

0 Select Relevant Features Remove rows with missing values.

7 Select Random Features

~\ Normalize Features

-~ Randomize

“ Principal Component Analysis
2 CUR Matrix Decomposition

Output (3]

Send Automatically

? B

1. List of pre-processors. Double click the pre-processors you wish to use and shu/Z e their
order by dragging them up or down. You can also add pre-processors by dragging them
from the left menu to the right.

2. Pre-processing pipeline.

3. When the box is ticked (Send Automatically), the widget will communicate changes
automatically. Alternatively, click Send.

7.9.3. Pre-processors

Figure 7.14 Select Random Features Preprocess

Entropy-MDL
O Eque
Equ

Number of intervals (for equal width/frequency)

o °
Scor
Information G: a8
Number of features
© Fixed 10
Proport
° Solect Ranom Fesiurss °
Number of features

2 B | w0 [3@5180

192 Chapter 07 —Data and Processing

1. List of pre-processors.

2. Discretization of continuous values:

Entropy-MDL discretization by Fayyad and Irani that uses expected information to
determine bins.

Equal frequency discretization splits by frequency (same number of instances in
each bin.

Equal width discretization creates bins of equal width (span of each bin is the same).

Remove numeric features altogether.

3. Continuation of discrete values:

Most frequent as base treats the most frequent discrete value as 0 and others as 1.
The discrete attributes with more than 2 values, the most frequent will be considered
as a base and contrasted with the remaining values in corresponding columns.

One feature per value creates columns for each value, place 1 where an instance has
that value and 0 where it doesn’t. Essentially One Hot Encoding.

Remove non-binary features retain only categorical features that have values of
either 0 or 1 and transform them into continuous.

Remove categorical features and removes categorical features altogether.

Treat as ordinal takes discrete values and treats them as numbers. If discrete values
are categories, each category will be assigned a number as they appear in the data.
Divide by number of values is similar to treat as ordinal, but the final values will be
divided by the total number of values and hence the range of the new continuous
variable will be [0, 1].

4. Impute missing values:

Average/Most frequent replaces missing values (NaN) with the average (for
continuous) or most frequent (for discrete) value.

Replace with random value replaces missing values with random ones within the
range of each variable.

Remove rows with missing values.

Chapter 07 —Data and Processing 193

5. Select relevant features:

e Similar to Rank, this pre-processor outputs only the most informative features. A
score can be determined by information gain, gain ratio, gini index, ReliefF, fast
correlation-based filter, ANOVA, Chi2, RReliefF, and Univariate Linear
Regression.

e Strategy refers to how many variables should be on the output. Fixed returns a fixed
number of top scored variables, while Percentile return the selected top percent of
the features.

6. Select random features outputs either a fixed number of features from the original data

or a percentage. This is mainly used for advanced testing and educational purposes.

Figure 7.15 CUR Matrix Decomposition

@ ® Preprocess

Preprocessors [x] Normalize Features (1]

-~ Discretize Continuous Variables Y
© sStandardize to p=0,0%*=1

Center to u=0
Scale to 0*=1
Normalize to interval [-1,1]
Normalize to interval [0,1]

s2= Continuize Discrete Variables
¥ Impute Missing Values

[% Select Relevant Features

7] Select Random Features

" Normalize Features

% Randomize 0 Randomize (2]

7| Remove Sparse Features
» Principal Component Analysis Randomize: Classes

¥ CUR Matrix Decomposition

Replicable shuffling:

Q Remove Sparse Features o

Remove features with too many

© missing values
zeros

Threshold:

Fixed

~

O Percentage 5

Q Principal Component Analysis (4]

Components: 10 £

(x] CUR Matrix Decomposition [5)

Rank: 10 <

Relative error: 1.00 T

2 B | #1110 B @150

1. Normalize adjusts values to a common scale. Center values by mean or median or omit
centering altogether. Similar for scaling, one can scale by SD (standard deviation), by
span, or not at all.

2. Randomize instances. Randomized classes shufes class values and destroys the

connection between instances and class. Similarly, one can randomize features or

194 Chapter 07 —Data and Processing

metadata. If replicable shu/ ing is on, randomization results can be shared and repeated
with a saved workflow. This is mainly used for advanced testing and educational
purposes.

3. Remove sparse features retain features that have more than a number/percentage of
non-zero/missing values. The rest are discarded.

4. Principal component analysis outputs results of a PCA transformation. Similar to the
PCA widget.

5. CUR matrix decomposition is a dimensionality reduction method, similar to SVD.

7.9.4. Pre-processing for predictive modelling

When building predictive models, one has to be careful about how to do pre-processing.

There are two possible ways to do it in Orange, each slightly different:

1. Connect Pre-process to the learner. This will override the default pre-processing
pipeline for the learner and apply only custom pre-processing pipeline (default pre-

processing steps are described in each learner’s documentation).

D ata i

&
s
{
o
o

i P'O[]FOCC'E'.‘.SI]T]
File ## _/- Test and Score

Preprocess Logistic Regression

2. Connect Pre-process to Test and Score. This will apply the pre-processors to each batch
within cross-validation. Then the learner’s pre-processors will be applied to the pre-

processed subset.

D Data
o
ceast’ u

File ﬁ#

Preprocess f

Test and Score

Logistic Regression

Finally, there’s a wrong way to do it. Connecting Pre-process directly to the original data

and outputting pre-processed data set will likely overfit the model. Don’t do it.

Chapter 07 —Data and Processing 195

Preprocessed Data 2
D Data a Data =

File Preprocess S

5 Test and Score

Logistic Regression

Example:

In the first example, we have used the heart_disease.tab dataset available in the dropdown
menu of the File widget. then we used Pre-process to impute missing values and normalize
features. We can observe the changes in the Data Table and compare it to the non-processed
data.

[]
E Prepracessed Dala —
o Data 5 . .
= o q‘k D diameter narrowin 9 age gender chest pain rest 58P cholesteral thal
= & sa i 68 male non-anginal 180 274 reversable d...
o D Proprocess Dl Table 8 0 52 male atypical ang 120 325 normal
3 2 (Prepracessed) 8 0 44 male non-anginal 140 235 normal
z . ¢ D & [0 47 male non-anginal 138 257 normal
" s 0 53 female non-anginal 128 216 2
8 |0 53 female asymptomatic 138 234 normal
Ea] Dota. Table 0 0 51 female non-anginal 130 256 normal
o [0 66 male asymptomatic 120 302 normal
ene Preprocess o2 [62 female asymptomatic 160 164 reversable d...
o EE [x] Imeute Missing Values 93 0 62 male non-anginal 130 231 reversable d...
- Discretize Continuous Variables s [0 44 temale non-anginal 108 141 normal
= Continuize Discrete Variables 0222:::1;’::::‘:“:2‘“ o5 0 63 female non-anginal 135 252 normal
[Impute Missing Values netam val o6 52 male asymptomatic 128 255 reversable d...
D Select Relevant Features Remove rows with missing values,
[7) Select Random Features
Normalize Features] gk s
% Randemize
“ Principal Component Analysis Center: _Center by Mean
¥ CUR Matrix Decomposition Scale: Scale by SD liametes wi g gender chest pain rest SBP cholesterol thal
g4 i 1.503 male non-anginal 2749 0.528 reversable d...
& |0 -0.270 male atypical ang -0.665 1515 normal
Outpar 8 0 -1.157 male non-anginal 0.473 -0.226 normal
&7 [0 -0.824 male non-anginal 0.359 0.199 normal
Send Automatically 8 0 -0.159 female non-anginal -0.210 -0.594 normal
8 |0 -0.159 female asymptomatic 0.359 -0.246 normal
28 s0 [0 -0.381 female non-anginal -0.096 0.180 normal
a1 0 1.281 male asymptomatic -0.665 1.070 normal
sz 0.838 female asymptomatic 161 1600 reversable d..
2 [0 0.838 male non-anginal -0.096 -0.304 reversable d..
sa [0 -1157 female non-anginal -1.348 -2.045 normal
8 [0 0.949 female non-anginal 0.188 0.103 normal
e la 0770 mnin p——. naan PP am——

In the second example, we show how to use Preprocess for predictive modeling.

This time we are using the heart_disease.tab data from the File widget. You can access the
data in the dropdown menu. This is a dataset with 303 patients that came to the doctor
suffering from chest pain. After the tests were done, some patients were found to have
diameter narrowing and others did not (this is our class variable).

Some values are missing in our data set, so we would like to impute missing values before
evaluating the model. We do this by passing a preprocessor directly to Test and Score. In

Preprocess, we set the correct preprocessing pipeline (in our example only a single

196 Chapter 07 —Data and Processing

preprocessor with Impute missing values), then connect it to the Preprocessor input of Test

and Score.

We also pass the data and the learner (in this case, a Logistic Regression). This is the correct

way to pass a preprocessor to cross-validation as each fold will independently get

preprocessed in the training phase. This is particularly important for feature selection.

Sampling

* Cross validation

- ¥ Stratified
[
== D Data
o = -
e ™ a
Sk ,
File
9g Test and Score Random sampling
= Preprocess £ X
f Repeat trainftest:
EI / Training set size:
- Logistic Regression v Stratified
a Leave one out
Preprocess Test on train data
Preprocessors o Impute Missing Vakues. Test on test data
- Discretize Continuous Variables
)) , ® Average/Most frequent Target Class
st Continuize Discrete Variables T ——
§ ace with random valu
[Impute Missing Values P! {Average over classes)
= Remove rows with missing values.
T Select Relevant Features
[Select Random Features Model Comparisan
. Mormalize Features Area under ROC curve
% Randomize
7] Remove Sparse Features Negligible difference:
“ Principal Companent Analysis
& CUR Matrix Decomposition
4] 3031-1@|@

v

Number of folds: 6

+ 303 | 1%303

Test and Score
Evaluation Results

Modal v AUC ca F1 Precision Recall
Logistic Regression 0.910 0.845 0.844 0.846 0.845

Model Comparison by AUC

Table shows probabilities that the scare for the madel in the row is higher than that of the
model in the column.Small numbers show the probability that the ditference is negliaible.

Chapter 07 —Data and Processing 197

f :

1. Orange 3 is a tool that can analyze data simply without coding.

2. File and CSV File Import widgets can be used to retrieve and utilize files stored on

the computer.

3. The Datasets widget can be used to retrieve and utilize various example data used
for data analysis learning.

4. Data Table is a widget that converts data into a table form and shows it in detail.
5. Select Columns, Select Rows widgets allow you to select columns and rows
according to specific conditions.

6. The Input widget can be used to fill in missing values (missing data) that may occur
in the data.

7. The Outliers widget can be used to locate and exclude outliers (data outside of
statistical scope).

8. Pre-process widget can be preprocessed in the desired form through various
preprocessing functions such as data conversion and data modification.

_ _J
- ,',. Questions ~

1. What is the file extension in the form of storing data separated by commas?

2. What expression method has columns and rows and can accurately determine
the exact value of the data?
3. What do rows and columns of data mean in the data expressed in table form?

4. Give 3 examples of how to fill in missing values of data.

198 Chapter 07 —Data and Processing

C= Exercises

1. Use Google Links (bit.ly/o3knue) to upload ice cream sales data to Orange 3.
2. Express and interpret the ice cream sales data in table form.
3. Fill in the missing values from the ice cream sales data.

Chapter 08
Data visualization

In this chapter, you will learn about various ways to visualize your data. The larger the number of
data, the more difficult it is to interpret it as a representation in the form of a table, and the more

difficult it is to interpret the detailed interpretation of relationship between the data.

The advantage of representing data in charts, tables, and plots is that you can easily see and

interpret data trends and features at a glance.

In this chapter, you will learn:
8.1 Box Plot
8.2 Violin Plot
8.3 Distribution
8.4 Heat Map
8.5 Scatter Plot
8.6 Line Plot
8.7 Bar Plot
8.8 Vann Diagram

8.9 Linear Projection

Chapter 08 —Data visualization 201

8.1. Box Plot

Shows the distribution of attribute values.

8.1.1. Inputs

e Data: input dataset

8.2.2. Outputs

e Selected Data: instances selected from the plot

e Data: data with an additional column showing whether a point is selected
The Box Plot widget shows the distributions of attribute values. It is a good practice to
check any new data with this widget to quickly discover any anomalies, such as duplicated
values (e.g., gray and grey), outliers, and alike. Bars can be selected - for example, values

for categorical data or the quantile range for numeric data.

Figure 8.1 Box Plot

[] ® Box Plot
Variable o
diameter narrowing
gender (4]
0:52.569295
Order by relevance to subgroups (5] |
-
1 1 |
Subgroups [44.50 52 59
6]
ite 1:56.6327.9
None |
; —I

E diameter narrowing 1 | |
52 58 62
gender

-
Order by relevance to variable

30 40 50 80 70 B8O
Display [} Student's t: 4.044 (p=0.000, N=303)
v Annotate
No comparison
Compare medians

®) Compare means

?2BB |30 B

1. Select the variable you want to plot. Tick Order by relevance to subgroups to order
variables by Chi2 or ANOVA over the selected subgroup.

2. Choose Subgroups to see box plots displayed by a discrete subgroup. Tick Order by
relevance to variable to order subgroups by Chi2 or ANOVA over the selected variable.

3. When instances are grouped by a subgroup, you can change the display mode.

Annotated boxes will display the end values, the mean and the median, while comparing

202 Chapter 08 —Data visualization

medians and compare means will, naturally, compare the selected values between

subgroups.

Iris-setosa: 1.46490 £0.17138
I

] —I—] ﬂ
f I l ' |
1.4000 1, 5000 1.6000

5 6

4. The mean (the dark blue vertical line). The thin blue line represents the standard
deviation.

5. Values of the first (25%) and the third (75%) quantile. The blue highlighted area
represents the values between the first and the third quartile.

6. The median (yellow vertical line).

For discrete attributes, the bars represent the number of instances with each particular

attribute value. The plot shows the number of different animal types in the Zoo dataset:

there are 41 mammals, 13 fish, 20 birds, and so on.

Display shows:

e Stretch bars: Shows relative values (proportions) of data instances. The unticked box
shows absolute values.

e Show box labels: Display discrete values above each bar.

e Sort by subgroup frequencies: Sort subgroups by their descending frequency.

Chapter 08 —Data visualization 203

Figure 8.2 Variable

® ® Box Plot
Variable

Filter.
type
hair

| - NNV, ke
Order by relevance to subgroups

mammal I 21

bird I 20
Subgroups fish

Filter...
None

type
hair -

Order by relevance to variable reptile 5

invertebrate 10

insect 8

Display amphibian 3

Stretch bars 0 5 10 1% 20 25 30 35 40 45
V| Show box labels X% 600,00 (p=0,000, dof=36)

V| Sort by subgroup frequencies

?BB | Hw0o B

Examples:

The Box Plot widget is most commonly used immediately after the File widget to observe

the statistical properties of a dataset. In the first example, we used heart-disease data to
inspect our variables.

§ o
T
g

sl -

o Filg: hean_disease.tab < & Reload Order by relevance !
URL:

1566179
303 instanca(s), 13 faature(s], 0 meta attributa(s)

Classification; eategerical class with 2 values.

Calumns (Double click 10 edt)

farmale, male © Compare means.
asymptomatic, atypical ang, hon-an...
Student's t: 4.044 (0=0.000)

0,1

normal, left vent hypertraphy, ST-T

Box Plot is also useful for finding the properties of a specific dataset, for instance, a set
of instances manually defined in another widget (e.g. Scatter Plot or instances belonging to
some cluster or a classification tree node. Let us now use zoo data and create a typical

clustering workflow with Distances and Hierarchical Clustering.

Now define the threshold for cluster selection (click on the ruler at the top). Connect
Box Plot to Hierarchical Clustering, tick Order by relevance, and select Cluster as a
subgroup. This will order attributes by how well they define the selected subgroup, in our

case, a cluster. It seems like our clusters indeed correspond very well with the animal type!

204 Chapter 08 —Data visualization

Figure 8.3 Hierarchical Clustering

Chimonng

ppppppp

8.2. Violin Plot

Visualize the distribution of feature values in a violin plot.

8.2.1. Inputs

e Data: input dataset

8.2.2. Outputs

e Selected Data: instances selected from the plot

e Data: data with an additional column showing whether a point is selected

The Violin Plot widget plays a similar role as a Box Plot. It shows the distribution of
quantitative data across several levels of a categorical variable such that those
distributions can be compared. Unlike the Box Plot, in which all of the plot components

correspond to actual data points, the Violin Plot features a kernel density estimation of

the underlying distribution.

Chapter 08 —Data visualization 205

Figure 8.4 Violin Plot

ece Violin Plot
Variable o
Filte
[sepal length
[sepal width sl
@ petal length
[petal width
Order by relevance to subgroups
Subgroups e
7|
Filtes
None
e <
@ iris 5
=
=
o6
Order by relevance to variable “
Display o
Box plot
Strip plot .
Rug plot
Order subgroups
Orientation: Horizontal € Vertical
Density Estimation o s
Kernel: Normal B
w e
= iris
Scale: Area | <]

ABRe | I B-

1. Select the variable you want to plot. Tick Order by relevance to subgroups to order
variables by Chi2 or ANOVA over the selected subgroup.

2. Choose Subgroups to see violin plots displayed by a discrete subgroup. Tick Order
by relevance to variable to order subgroups by Chi2 or ANOVA over the selected
variable.

3. Box plot: Tick to show the underlying box plot.

— Strip plot: Tick to show the underlying data

Max (Q3+1.5* IQR)

represented by points.

Q3 (75th Percentile))
Median

— Rug plot: Tick to show the underlying data 'Q{ Q1 s pecere
represented by lines.
— Order subgroups: Tick to order violins by median (ascending).
— Orientation: Determine violin orientation.
4. Kernel: Select the kernel used to estimate the density. Possible kernels are: Normal,
Epanechnikov and Linear.
Scale: Select the method used to scale the width of each violin. If area is selected, each
violin will have the same area. If count is selected, the width of the violins will be scaled
by the number of observations in that bin. If width is selected, each violin will have the

same width.

206 Chapter 08 —Data visualization

L N Violin Plot
Variatie

Filter 600

0 age

0 restsep

@ cholesterol

) maxHR 500 |

Order by relevance to subgroups

Subgroups

o 400 |

None

diameter narrowing

@ gender
chest pain

cholesterol
%

Order by relevance to variable &
8208 ob
Display y 8o &%
{5 Box plot oo 8 8,
 strip plot 200 3\§§ 32
Rug plot
Order subgroups
Orientation: Horizontal) Vertical 100

Density Estimation
o 1

Kemel: Normal diameter narrowing

728B¢ |Hwm Baw

Example:
The Violin Plot widget is most commonly used immediately after the File widget to observe
the statistical properties of a dataset. In the first example, we have used heart-disease data
to inspect our variables.

The Violin Plot could also be used for outlier detection. In the next example, we

eliminate the outliers by selecting only instances that fall inside the Q1 1.5 and Q3 + 1.5
IQR.

Figure 8.5 Violin Plot by Display Strip Plot

.
O
£
— D:
e D ata ‘ *
&
x
Zles
Hee. File Violin Plot
22
[N) Violin Plot
Variable
Filter. 80
age |
rest SBP
cholesterol 70
max HR
Order by relevance to subgroups 60
Subgroups
&
Filter.. ®
50
None >
diameter narrowing
gender 40!
chest pain
Order by relevance to variable 30
Display
v
¥ Box plot 20! .)
Strip plot 0 1
Rug plot diameter narrowing

Order subarouos

2BBRe | Hw -

Chapter 08 —Data visualization 207

8.3. Distribution

Displays value distributions for a single attribute.

8.3.1. Inputs

e Data: input dataset

8.3.1. Outputs

— Selected Data: instances selected from the plot
— Data: data with an additional column showing whether an instance is selected
— Histogram Data: bins and instance counts from the histogram
The Distributions widget displays the value distribution of discrete or continuous
attributes. If the data contains a class variable, distributions may be conditioned on the
class.

The graph shows how many times (e.g., in how many instances) each attribute value
appears in the data. If the data contains a class variable, class distributions for each of
the attribute values will be displayed (like in the snapshot below). To create this graph,

we used the Zoo dataset.

Figure 8.6 Distributions

® ® Distributions
Variable (1) 40 -

amphibian
® bird

Filter
type .
ish
insect
feathers B
invertebrate
eggs 30 ® mammal
B reptile
airborne
~ .
Sort categories by frequency
Distribution 2] 20

Bin width

Frequency

Fitted distribution None

Hide bars

Columns ® 10

Split by [@ type
Stack columns

Show probabilities

Show cumulative distribution .

s .
no yes
v Apply Automatically hair

BB A B

208 Chapter 08 —Data visualization

1. Alist of variables for display. Sort categories by frequency orders displayed values

by frequency.

2. Set Bin width with the slider. Precision scale is set to sensible intervals. Fitted

distribution fits the selected distribution to the plot. Options are Normal, Beta,

Gamma, Rayleigh, Pareto, Exponential, Kernel density.

3. Columns:

Split by displays value distributions for instances of a certain class.

Stack columns displays one column per bin, colored by proportions of class
values.

Show probabilities shows probabilities of class values at selected variable.

Show cumulative distribution cumulatively stacks frequencies.

If Apply Automatically is ticked, changes are communicated automatically.

Alternatively, click Apply.

For continuous attributes, the attribute values are also displayed as a histogram. It is

possible to fit various distributions to the data, for example, a Gaussian kernel density

estimation. Hide bars hides histogram bars and shows only distribution (old behaviour

of Distributions).

For this example, we used the Iris dataset.

Figure 8.7 Distributions by Sepal Length

®"e Distributions

Variable o
16 Iris-setosa

@ [ris-versicolor
iris Iris-virginica
m sepal length 14
[sepal width
[oetal length

m petal width

Distribution 2]

Frequency
)

Bin width 0.2
Fitted distribution None

Columns 5}

4
Split by | @ iris ~
Stack columns
Show probabilities c
Show cumulative distribution |
oL THRE I
- 7d

5 6
sepal length

v

2808 | Ak B

In classless domains, the bars are displayed in blue. We used the Housing dataset.

Chapter 08 —Data visualization 209

Figure 8.8 Distributions by MEDV

||h“|“|“|”l il |
30 445 50

MEDV

ene Distributicns
Variable

Filter =

00 crim

[N 30
[wous

[cHas

[~ox

[, T

Sort categories by frequency
Distribution g
Bin width 158
Fitted distribution | None -
Hide bars
Columns
Split by -
Stack Imns
Show probabilities
Show cumulative distribution I I
oL In
- -
70 20

v Apply Automatically

N
o

Frequency

=)

788 | dse B

8.4. Heat Map
/e Plots a heat map for a pair of attributes and is a graphical method for visualizing attribute
O" values in a two-way matrix.
8.4.1 Inputs

e Data: input dataset

8.4.2. Outputs

e Selected Data: instances selected from the plot
e Data: data with an additional column showing whether a point is selected
Heat map is a graphical method for visualizing attribute values in a two-way matrix. It
only works on datasets containing numeric variables. The values are represented by
color according to the selected color palette. By combining class variables and attributes
on the x and y axes, we see where the attribute values are the strongest and where the
weakest, thus enabling us to find typical features for each class.

The widget enables row selection with click and drag. One can zoom in with Ctrl++
(Cmd++) and zoom out with Ctrl+- (Cmd+-). Ctrl+0 (Cmd+0) resets zoom to the

extended version, while Ctrl+9 (Cmd+9) reset it to the default.

210 Chapter 08 —Data visualization

Figure 8.9 Heat Map

ev e Heat Map

]
3
§ 83
Merge by k-means
Clusters: 50
a
2
cl g e 32
Row Nony a 2
Columns: None a
Split By o
Rows: iris (-]
Columns: (None) (-]
Annotation & Legends ° %
L
Show legend H
Stripes with averages T
Row Annotations o=
Text (None) [}
Color (None) (-]
Column annotations
Position Top (] 3
€
2
Color (None) (-] s
Resize (¢
Keep aspect ratio
o

?2EBB 3150 B-1150

1. The color palette. Choose from linear, diverging, color-blind-friendly, or other
palettes. Low and High are thresholds for the color palette (low for attributes with
low values and high for attributes with high values). Selecting one of the diverging
palettes, which have two extreme colors and a neutral (black or white) color at the
midpoint, enables an option to set a meaningful mid-point value (default is 0).

2. Merge rows. If there are too many rows in the visualization, one can merge them
with k-means algorithm into N-selected clusters (default 50).

3. Cluster columns and rows:

e None (lists attributes and rows as found in the dataset)

e Clustering (clusters data by similarity with hierarchical clustering on Euclidean
distances and with average linkage)

e Clustering with ordered leaves (same as clustering, but it additionally
maximizes the sum of similarities of adjacent elements)

4. Splitrows or columns by a categorical variable. If the data contains a class variable,
rows will be automatically split by class.

5. Set what is displayed in the plot in Annotation & Legend.

e If the show legend is ticked, a color chart will be displayed above the map.

Chapter 08 —Data visualization 211

e |If Stripes with averages is ticked, a new line with attribute averages will be
displayed on the left. Row An- notations add annotations to each instance on
the right. Color colors the instances with the corresponding value of the selected
categorical variable. Column Annotations adds an annotation to each variable
at the selected position (default is Top). Color colors the columns with the
corresponding value of the selected column annotation.

6. The If the keep aspect ratio is ticked, each value will be displayed with a square

(proportionate to the map).

7. If Send Automatically is ticked, changes are communicated automatically.

Alternatively, click Send.

8.4.3 Advanced visualization

Heat map enables some neat plot enhancements. Such options are clustering of rows
and/or columns for better data organization, row, and column annotations, and splitting
the data by categorical variables.

Row and column clustering is performed independently. Row clustering is
computed from Euclidean distances, while column clustering uses Pearson correlation
coefficients. Hierarchical clustering is based on the Ward linkage method. Clustering
with optimal leaf ordering reorders left and right branches in the dendrogram to

minimize the sum of distances between adjacent leaves (Bar-Joseph et al. 2001).

Figure 8.10 Advanced Heat Map

ene Heat Map
Color

-0.549 0.566
SRS os Graec-elow @) ——— f

Low:

MMMMM

Merge by k-means

Clusters: 50
Clustering
Rows: None (<]
Columns: Clustering (opt.ordering)
Split By
Rows: @ function [
Columns: ~ (None) [}
Annotation & Legends
Show legend
@ stripes with averages

Row Annotations.

Text (None)

<}

Color function

»
3

&

&

H

-
8

®

function

Resize BProteas MResp DRibo

288 |28 116

212 Chapter 08 —Data visualization

8.4.4. Gene expressions

The Heat Map below displays attribute values for the brown-selected data set (Brown
et al. 2000). Heat maps are particularly appropriate for showing gene expressions and
the brown-selected data set contains yeast gene expressions at different conditions.
Heat map shows low expressions in blue and high expressions in yellow and white.
For better organization, we added Clustering (opt. ordering) to the columns, which puts

columns with similar profiles closer together. In this way, we can see the conditions

that result in low expressions for ribosomal genes in the lower right corner.

Additionally, the plot is enhanced with row color on the right, showing which class the
rows belong to.

Figure 8.11 Advanced Heat Map by Gene expression

soaE

Source

\'v.‘ 5
O}

File

* File: brown-selectedtab

URL:

Info
Brown dataset

Gene expression of baker's yeast.

186 instance(s)

79 feature(s) (1.5% missing values)

ata

(G

Heat Map

File

Untitled

Classification; categorical class with 3 values (no missing values)

1 meta attribute(s)

Columns (Double click to edit)

Name
alpha 0
alpha 7
alpha 14
alpha 21

alpha 28

o o s w N[=

aloha 35

Reset

186

8.4.5. Sentiment Analysis

Heat maps are great for visualizing any kind of comparable numeric variables, for
example, sentiment in a collection of documents. We will take the book-excerpts corpus
from the Corpus widget and pass it to the Sentiment Analysis widget, which computes

sentiment scores for each document. The output of sentiment analysis is four columns,

Type

numeric
[numeric
0 numeric
numeric
numeric

M numeric

Role

feature
feature
feature
feature
feature

feature

Browse documentation datasets

ese
Color

B Biue-Green-Yellow

Low:
High:

Merge

Merge by k-means

Clusters: 50 <
Clustering

Rows: None &
Columns: ~ Clustering (opt.ordering) &)

Split By

Rows: function (-]
Columns: (None)

Annotation & Legends.
Show legend
Stripes with averages

Row Annotations.

Text (None) -]

Color function (-]
Column annotations

Position Top (]

Color (None) (]

Resize
2B B | D Biss

Proteas

Resp

Ribo

Heat Map

-0.549

0.566

function

@EProteas BResp DRibo

§ o s ¢ i
I N function

Chapter 08 —Data visualization 213

positive, negative, and neutral sentiment score, and a compound score that aggregates
the previous scores into a single number. Positive compound values (white) represent
positive documents, while a negative (blue) represent negative documents.

We used row clustering to place similar rows closer together, resulting in clear
negative and positive groups. Now we can select negative children’s books and explore

which are they.

Figure 8.12 Advanced Heat Map by Sentiment Analysis

[J (2] Heat Map
. Untitled Color
z= -0.9993 0.9997
D B Biue-Green-Yellow (2] —_—
2
o Corpus Corpus + Data 3
L R L 3 o H
iz / \ e o 3 E
/ 8 238 8§
x)) g & 238
% Corpus Sentiment Analysis HeatMap High:
s
z Merge
!
Sentiment Analysis Merge by k-means 4
% i
Method Clusters: 50 < |
i
Liu Hu Language: English S Clustering "
* Vader Rows: Clustering i<} - i
5
Multilingual sentiment Language: English < Columns: None (2] 3 |
SentiArt Language: ~ English ¢ Split By !
Custom dictionary Rows: Category (] {
Positive: (none) ¢ e Columns: (None) [+] |
o ~ - o §
Jegaivel (none) = g =~ Annotation & Legends :
Show legend {
v 2 Stripes with averages i
Row Annotations
31140 [3 140 |
Text (None) (V] |
Color (None) =] 5 |
2 4
£]
Column annotations L v
(]
Position Top 2]
Color (None) [V}

2B B | Fuo -1140

8.4.6. References

Bar-Joseph, Z., Gifford, D.K., Jaakkola, T.S. (2001) Fast optimal leaf ordering for
hierarchical clustering, Bioinformat- ics, 17, 22-29.

Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey, T.S., Ares, M.,
Haussler, D. (2000) Knowledge- based analysis of microarray gene expression data by
using support vector machines, Proceedings of the National Academy of Sciences, 1,
262-267.

214 Chapter 08 —Data visualization

8.5. Scatter Plot

Scatter plot visualization with exploratory analysis and intelligent data visualization
enhancements.

8.5.1 Inputs

e Data: input dataset
e Data Subset: subset of instances

e Features: list of attributes

8.5.2. Outputs
e Selected Data: instances selected from the plot

The Scatter Plot widget provides a 2-dimensional scatter plot visualization. The data is
displayed as a collection of points, each having the value of the x-axis attribute
determining the position on the horizontal axis and the value of the y-axis attribute
determining the position on the vertical axis. Various properties of the graph, like color,
size and shape of the points, axis titles, maximum point size, and jittering can be
adjusted on the left side of the widget. A snapshot below shows the scatter plot of the

Iris dataset with the coloring matching of the class attribute.

Figure 8.13 Scatter Plot

[] [] Scatter Plot

Axes L]
Axis x: [petal length [~] 24
Axis y: petal width (-]
2.2
I e e
o 2
Color: iris [~]
1.8 a
Shape: (Same shape) a ®
Size: (Same size) [~) 16 o0 @
Label (No labels) [-] © eDe
e e] £ * &
el only selection and subset g
1 H O @D
Symbol size: B 12 amoo o
Opacity: —_— ® @
Jittering: 1 @eo @
Jitter numeric values
Show color regions 0.8
Show legend
Show gridiines 06
Show all data on mouse hover
Show regression line
0.4 @
° [3]
Z s
oom/Select 0.2/ 0 cumm
B O Q > @
1 2 3 a 5 6 7
e

PEBE® | 3w60i-1- [3-115012

Chapter 08 —Data visualization 215

1. Select the x and y attribute. Optimize your projection with Find Informative
Projections. This feature scores attribute pairs by average classification accuracy
and returns the top-scoring pair with a simultaneous visualization update.

2. Attributes: Set the color of the displayed points (you will get colors for categorical
values and blue-green-yellow points for numeric). Set label, shape, and size to
differentiate between points. Label-only selected points to allow you to select
individual data instances and label only those.

3. Set symbol size and opacity for all data points. Set jittering to prevent the dots from
overlapping. Jittering will randomly scatter points only around categorical values.
If Jitter numeric values are checked, points are also scattered around their actual
numeric values.

e Show color regions colors the graph by class (see the screenshot below).

e Show legend displays a legend on the right. Click and drag the legend to move
it.

e Show gridlines display the grid behind the plot.

e Show all data on mouse hover enabling information bubbles if the cursor is
placed on a dot.

e Show regression line draws the regression line for pair of numeric attributes. If
a categorical variable is selected for coloring the plot, individual regression lines
for each class value will be displayed. The reported r value corresponds to the
value from linear least-squares regression, which is equal to Pearson’s
correlation coefficient.

e Treat variables as independent fits regression line to a group of points (minimize
the distance from points), rather than fitting y as a function of x (minimize
vertical distances)

4. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The
manual selection of data instances works as an angular/square selection tool.
Double-click to move the projection. Scroll in or out for zoom.

5. If Send automatically is ticked, changes are communicated automatically.
Alternatively, press Send.

Here is an example of the Scatter Plot widget if the Show color regions and Show regression

line boxes are ticked.

216 Chapter 08 —Data visualization

® L] Scatter Plot

Axes
Axis x: [0 petal length (-] 24 /

Axis y: [0 petal width

Find Informative Projections ‘/;/

Attributes

(<}
&)
%
N N

Color: iris

Shape: (Same shape)

Size: (Same size|)

Label: (No labels) (-]

Label only selection and subset

Symbol size:

petal width

Opacity: —

Jittering: 1

Jitter numeric values

Show color regions 0.8
Show legend

Show gridiines 06
Show all data on mouse hover
 Show regression line

Treat variables as independent
Iris-setosa

ZoonySelect 02 OP}Q) ris-versicolor
. D Q 52 @ Iris-virginica
1 2 3 4 5 6 7
petal length

?BB& | F150)-1- [3-1150]2

8.5.3. Intelligent Data Visualization

If a dataset has many attributes, it is impossible to manually scan through all the pairs
to find interesting or useful scatter plots. Orange implements intelligent data

visualization with the Find Informative Projections option in the widget.

If a categorical variable is selected in the Color section, the score is computed as follows.
For each data instance, the method finds 10 nearest neighbors in the projected 2D space,
that is, on the combination of attribute pairs. It then checks how many of them have the
same color. The total score of the projection is then the average number of same-colored
neighbors.

The computation for numeric colors is similar, except that the coefficient of
determination is used for measuring the local homogeneity of the projection.

To use this method, go to the Find Informative Projections option in the widget, open
the sub-window, and press Start Evaluation. The feature will return a list of attribute
pairs by average classification accuracy score.

Below, there is an example demonstrating the utility of ranking. The first scatter
plot projection was set as the default sepal width to sepal length plot (we used the Iris
dataset for simplicity). Upon running Find Informative Projections optimization, the
scatter plot converted to a much better projection of petal width to petal length plot.

Chapter 08 —Data visualization 217

Figure 8.14 Intelligent Data Visualization

ece Scatier Plot
iy s
@
Axisx (8 sepal lengtn
Adsy: (B wwal wiotn B a2z e
Find Informative Projectians °
n o
Sttering: - 3% .
Jitter contimuous values s . .
e o o0
Color: B B L ot
es0 ©
Label: | (Nolabels) B
§ o0 000 @ ®
Shape: _(Same shape] B pos ®
R (Eue it} B % 22ooe o ® o
Symbol size: — o o® e
Opacity: sfee eoe o e0 s0e o6
° 00 00000 ©
ot Proerties
y— 28 ®c ec000 ©
Show grid ¢ oo
Shaw all data on mouse hover 28 ° oo
Shaw class denity
e o [:1:) ®
Label oriy selected points 24] °
Zoomseect ° ° ° o
= 22 ee
Y
2 o
(] Send Automatically & i
Suve inoge Rapon sepal length

8.5.4. Selection

LN Scatter Piot
is-sutsa Rt
i R T T B , rls-patcas
Via-rrgica = ® ris-versicoler
My | @ peral wicth B o
.
Jattering: % 2
Jiter continugs vatas
poiens 18 @
T °
Color: @is B
15 oo o
Label: | (No labels) B
£ ° me
Bl e sl B e e emm
Size: Same size) B i PR
Syl ih; e 12 ®@eo o
Opacity; ————— ° @
1 eeo @
Pt propueton
ece Seore Plots
a8
Filter hovie
a8 "
+ patallengih, petal wicth 1 od
°
2 petal width, sepal widh o | s
3 petal width, sepal length iy
& petal length, stpal length 02 |0 cesee0 ©
5 petal length, sepal width o @
ay
& sepal length, sepal width 1 2 3 @ (] & 7
Aaport petal length

Selection can be used to manually defined subgroups in the data. Use Shift modifier

when selecting data instances to put them into a new group. Shift + Ctrl (or Shift + Cmd

on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.

- o -

Axis Data
@ x
®y

Axis x:

Axis y:

Jittering:

Jitter continuous values

Points
Color: (Same color)
Label: (No labels)
Shape: (Same shape)

Size: (Same size)

Symbol size:

Opacity:

Plot Properties

Show legend
Show gridlines
Show all data on mouse hover
Show class density
Show regression line
Label only selected points

Zoom/Select

B DQal|c

Save Image Report

&

Figure 8.15 Selection

0.7}

05l @

0.2}

o
o]
o
© _©
8 © o
9 ° o®
(o] Oo
o
©
o
o]
o
9 o
o 0o
(o]
o o
o
-
o]
o
0.1 0.2 03 0.4 0.5 06 0.7

218 Chapter 08 —Data visualization

8.5.6. Exploratory Data Analysis

The Scatter Plot, like the rest of the Orange widgets, supports zooming in and out of
part of the plot and a manual selection of data instances. These functions are available

in the lower-left corner of the widget.

The default tool is Select, which selects data instances within the chosen rectangular
area. Pan enables you to move the scatter plot around the pane. With Zoom, you can
zoom in and out of the pane with a mouse scroll, while Reset zoom resets the
visualization to its optimal size. An example of a simple schema, where we selected
data instances from a rectangular region and sent them to the Data Table widget, is
shown below. Notice that the scatter plot doesn’t show all 52 data instances, because

some data instances overlap (they have the same values for both attributes used).

Figure 8.16 Exploratory Data Analysis

ene Scatter Plot

ece # untitied A Ow S
Auds @ petal width 2] rle-setosa
™M Asisy: | (@ petal length B
& Find Informative Projections
6
b Selected Data Jittoring: %
Data ot Data
F D & D Jitter continuous values
S o Scatr Pt Daia Tatke Poces °
= 5 o
ece Data Table Color: | @iris B . g. .
Label: | (Nolsbels) B . s o
1 nstances (no missing values) = Col S] oRe
; o |fisarsieaian) 5.000 2300 Shapa: | (Same shape) B
4 features (no missing values) L L))
Discrete class with 3values (no |7 [MSSBSROIGRY 5,000 LI%0 Sie: | (Samesize)) B § - 8 FLIN
missing values) 10 [Miarsicalon 5,400 200 2 8
el N 1g 6000 3,400 Symbol size:) =
) £.700 2100 o °
n £.100 3.000 °
e n 5.800 2.700 Plot Properties
Show variable lebels {if present) 6.300 2900 ® 3 °
Visualize continuous values = 4.900 2.500 Show legend
Color by instance classes = g Show gridlines
25 §.:500 3.200 Show all data en mouse hover
— 26 ssuirginica | 5400 2700 Show class de
27 isvirginica 5.700 2500 ression line
e 25 |iiaNirginieat ©.500 3000 Label only selected points 2k
8000 2200 S -
Restore Original Order » o0, Select 2000
0 5.600 2800 FoomiSeiect o8
Report 2 8300 2.700 B (o][al[:: g $
3 6.200 2.800 h
Send Automatically = e — e

Sand Automatically

0Z 04 06 08 1 1z 14 16 18 2 22 24

Save Image Report potal width

Example:

The Scatter Plot can be combined with any widget that outputs a list of selected data
instances. In the example below, we combine Tree and Scatter Plot to display instances
taken from a chosen decision tree node (clicking on any node of the tree will send a set of
selected data instances to the scatter plot and mark selected instances with filled symbols).

/

Chapter 08 —Data visualization 219

AAAAAA
is-setosa
Axis | length
- LETEE B 2 ® iris-versicolor
yyyyy @ petal width B A
eoe - [riomaie roeciors 2
= Sttering: 3% 2
F itter continuous vaiues
E Points. 8 X
e °
) \ o oo © B
=2 o0 o
i D / &~ Label: () B o
2 ' 0 oDo:
' N ~~
5 Fie §_§ Scaner Pt Shape: _(Same shape) B o oa
" 9 S (Som B O QoooID
7 P L Symbol size: ———— oo
+ B
f 5 :)
Model o0 Codl .
- it { ‘Q ¥ 000 @
) =
- 08
ene
"
s
9 nodes, 5 leaves
04
0.2 000

8.5.7. References
Gregor Leban and Blaz Zupan and Gaj Vidmar and Ivan Bratko (2006) VizRank: Data

Visualization Guided by Ma- chine Learning. Data Mining and Knowledge Discovery,
13 (2). pp. 119-136. Available here.

8.6. Line Plot

It is a visualization of data profiles. A line Plot is a type of plot which displays the data as

a series of points, connected by straight line segments.

8.6.1. Inputs

e Data: input dataset

e Data Subset: the subset of instances

8.6.1. Outputs
e Selected Data: instances selected from the plot

e Data: data with an additional column showing whether a point is selected

220 Chapter 08 —Data visualization

Line plot is a type of plot which displays the data as a series of points, connected by
straight line segments. It only works for numerical data, while categorical can be used

for grouping of the data points.

Figure 8.17 Line Plot

[Line Plot

Info 1] s

150 instances on input
4 features

Iris-setosa
® Jris-versicolor

Display a Iris-virginica
Lines [
Range
Mean
Error bars 5

Group by 3]

None
& iris

Zoom/Select [4]

B &) Q|

1

ok
\ \ | \
Send ALtamatically @ sepal length sepal width petal length petal widt

?2EBB

1. Information on the input data.
2. Select what you wish to display:
e Lines show individual data instances in a plot.
e Range shows the range of data points between the 10th and 90th percentile.
e Mean adds the line for mean value. If a group by is selected, means will be
displayed per each group value.
e Error bars show the standard deviation of each attribute.

3. Select a categorical attribute to use for grouping data instances. Use None to show
ungrouped data.

4. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The
manual selection of data instances works as a line selection, meaning the data under
the selected line plots will be sent on the output. Scroll in or out for zoom. When
hovering over an individual axis, scrolling will zoom only by the hovered-on axis
(vertical or horizontal zoom).

5. If Send Automatically is ticked, changes are communicated automatically.

Alternatively, click Send.

Chapter 08 —Data visualization 221

Example:

Line Plot is a standard visualization widget, which displays data profiles, normally of
ordered numerical data. In this simple example, we will display the iris data in a line plot,
grouped by the iris attribute. The plot shows how petal length nicely separates between

class values.

If we observe this in a Scatter Plot, we can confirm this is indeed so. Petal length is an
interesting attribute for separation of classes, especially when enhanced with petal width,

which is also nicely separated in the line plot.

Axisx: [petal length
Axisy: [petal width

Find Informative Projections 22

DC Color: @ iris
Shape: (Same shape)
Size: (Same size)

Fio N ™ Label: (No labels) 2 16

0o Label only selected points

Symbol size:
Opacity: -

ils| - e R aE R
)

petal width

L J L] Line Plot
Info Jitter numeric values
2 8 ris-setosa

150 instances on input

4 features icolor o regions
end

2 dlines 0.6

mmmmm

petal length

) - 5 sepal length sepal width petal length petal wid

8.7. Bar Plot

Visualizes comparisons among discrete categories.

8.7.1. Inputs
e Data: input dataset

e Data Subset: the subset of instances

8.7.2. Outputs

e Selected Data: instances selected from the plot

e Data: data with an additional column showing whether a point is selected

222 Chapter 08 —Data visualization

The Bar Plot widget visualizes numeric variables and compares them by a categorical

variable. The widget is useful for observing outliers, distributions within groups, and

comparing categories.

LR
L1]

Values: cholesterol -
Group by: diameter narrowing ~
Annoctations: | None hd

Color: diameter narrowing

Zoom/Select

B || &)@z

cholesterol

(3]

v Send Automatically

?2BBE | Hs0s B o

500

3

o
=]

2

o
=]

1

o
=]

o]

Figure 8.18 Bar Plot

Bar Plot

®0

.

| Data has too many instances. Only first 200 are shawn.

1. Parameters of the plot. Values are the numeric variable to plot. Group by is the

variable for grouping the data. Annotations are categorical labels below the plot.

Color is the categorical variable whose values are used for colouring the bars.

2. Select, zoom, pan and zoom to fit are the options for exploring the graph. The

manual selection of data instances works as an angular/square selection tool.

Double click to move the projection. Scroll in or out for zoom.

3. If Send automatically is ticked, changes are communicated automatically.

Alternatively, press Send.

4. Access help, save image, produce a report, or adjust visual settings. On the right,

the information on input and output are shown.

Example:

The Bar Plot widget is most commonly used immediately after the File widget to compare

categorical values. In this example, we have used heart-disease data to inspect our variables.

Chapter 08 —Data visualization 223

=)
=

Conditions D
lh

[age = |is greater than ~ 60

Add Condition Add All Variables Remove All
Select Rows

L] Bar Plot

Remove unused Values: [cholesterol

_ Groupby: [@ diameter narrowing ~
3 | Faos B
Annotations: | None - 200

Color: @ diameter narrowing ~

0
L]
0
i
Zoom/Select H
S 200
53 g R||E2
100

v

! Data has too many instances. Gnly first 200 are shown.

7TBEB& | 303 B

First, we observed the cholesterol values of patients from our data set. We grouped
them by diameter narrowing, which defines patients with heart disease (1) and those
without (0). We use the same variable for colouring the bars.

Then, we selected patients over 60 years of age with Select Rows. We sent the subset
to Bar Plot to highlight these patients in the widget. The big outlier with a high

cholesterol level is apparently over 60 years old.

8.8. Venn Diagram

Plots a Venn diagram for two or more data subsets.

8.8.1. Input

e Data: input dataset

8.8.2. Output
e Selected Data: instances selected from the plot
e Data: entire data with a column indicating whether an instance was selected or not
The Venn Diagram widget displays logical relations between datasets by showing the
number of common data in- stances (rows) or the number of shared features (columns).

Selecting a part of the visualization outputs the corresponding instances or features.

224 Chapter 08 —Data visualization

Figure 8.19 Venn Plot

D Scatter plot (1) @ D

i Venn Diagram Data Table
File (1) AL X
2e® (selected instances
from scatterplots)

Scatter plot (2)

® Venn Diagram

iris iris

46 55 (alf: 56)

Elements 1] Qutput 5]

Columns (features)

Qutput duplicates
o Rows (instances), matched by

. . b Send Auto
Instance identity T 2 SR AR

?E B Datasets #1 and #2 have no suitable identifiers.

1. Select whether to count common features or instances.
2. Select whether to include duplicates or to output only unique rows; applicable only
when matching instances by values of variables.
3. Rows can be matched
e Dby their identity, e.g. rows from different data sets match if they came from the
same row in a file,
e Dby equality, if all tables contain the same variables,

e or by values of a string variable that appears in all tables.

Example:

The easiest way to use the Venn Diagram is to select data subsets and find matching
instances in the visualization. We use the breast-cancer dataset to select two subsets with
Select Rows widget - the first subset is that of breast cancer patients aged between 40 and
49 and the second is that of patients with a tumor-size between 20 and 29. The Venn
Diagram helps us find instances that correspond to both criteria, which can be found in the

intersection of the two circles.

CEE - BRI

[Add Condition |

In; ~286 rows, 10 variables
Out: ~30 rows, 10 variables

¢ a0-49

Add All Variables Remove All

Candiians
Purging
Remove unused features
Remove unused classes

Data

In: ~28B6 rows, 10 variables
Out; ~54 rows, 10 variables

@ tumor-size

Chapter 08 —Data visualization 225

ene Venn Biagram
breast-cancer breast-cancer
87 (all: 90) 51 (alt: 54)
Elements Outgut

Columns (features)

Qutput dupiicates
© Rows (instances), matched by

Instance identity <]
TBB Datasets #1 And ¥Z Nave no Sultable Kentifiers.
S 25-28
Add Condition | Add All Variables Remove All

Purging
Remave unused features
Remove unused classes

The Venn Diagram widget can be also used for exploring different prediction models. In

the following example, we analysed 3 prediction methods, namely Naive Bayes, SVM and

Random Forest, according to their misclassified instances.

By selecting misclassifications in the three Confusion Matrix widgets and sending them to

Venn diagram, we can see all the misclassification instances visualized per method used.

Then we open Venn Diagram and select, for example, the misclassified instances that were

identified by all three methods. This is represented as an intersection of all three circles.

Click on the intersection to see these two instances marked in the Scatter Plot widget. Try

selecting different diagram sections to see how the scatter plot visualization changes.

xiexlrssam0f

7B

SVM

Random Forest

7

Output

Output duplicates

Show: | Number of instancas [

Iris-setosa | icol I
s0 o o 50
o a1 9 50
o 7 a3z 50
H 50 a8 sz 150

e

226 Chapter 08 —Data visualization

8.9. Linear Projection

A linear projection method with explorative data analysis.

8.9.1. Inputs
e Data: input dataset
e Data Subset: subset of instances

e Projection: custom projection vectors

8.9.2. Outputs

e Selected Data: instances selected from the plot

e Data: data with an additional column showing whether a point is selected

e Components: projection vectors

This widget displays linear projections of class-labeled data. It supports various types
of projections such as circular, linear discriminant analysis, and principal component
analysis.

Consider, for a start, a projection of the Iris dataset shown below. Notice that it is the
sepal width and sepal length that already separate Iris setosa from the other two, while

the petal length is the attribute best separating Iris versicolor from Iris virginica.

Figure 8.20 Linear Projection

[] ® Linear Projection

[0 sepal length
[sepal width
[petal length
[

2°

© circular Placement
Linear Discriminant Analysis
Principal Component Analysis

5
o

Color: iris

| I <

Shape: (Same shape)

Size: (Same size)

Labal: (No labels) -] [] -
sepal length
Label only selection and subset .

Symbol size:

<

Opacity:
Jittering:
Hide radius:

=
i &
Show color regions &
F
3

2 show legend &
Zoom/Select
6]
B o[q] Iris-setosa
@ Iris-versicolor
Send Automatically % Iris-virginica

7BB& | D0 B-

Chapter 08 —Data visualization 227

1. Axes in the projection that are displayed and other available axes. Optimize your
projection by using Suggest Features. This feature scores attributes and returns the
top scoring attributes with a simultaneous visualiza- tion update. Feature scoring
computes the classification accuracy (for classification) or MSE (regression) of k-
nearest neighbors classifier on the projected, two-dimensional data. The score
reflects how well the classes in the projection are separated.

2. Choose the type of projection:

e Circular Placement
e Linear Discriminant Analysis
e Principal Component Analysis

3. Set the color of the displayed points. Set shape, size, and label to differentiate
between points. Label only selected points labels only selected data instances.

4. Adjust plot properties:

e Symbol size: set the size of the points.

e Opacity: set the transparency of the points.

e Jittering: Randomly disperse points with jittering to prevent them from
overlapping.

e Hide radius: Axes inside the radius are hidden. Drag the slider to change the
radius.

5. Additional plot properties:

e Show color regions colors the graph by class.
e Show legend displays a legend on the right. Click and drag the legend to move
it.

6. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The
manual selection of data instances works as an angular/square selection tool.
Double-click to move the projection. Scroll in or out for zoom.

7. If Send automatically is ticked, changes are communicated automatically.

Alternatively, press Send.

Example:

The Linear Projection widget works just like other visualization widgets. Below, we

connected it to the File widget to see the set projected on a 2-D plane. Then we selected the

228 Chapter 08 —Data visualization

data for further analysis and connected it to the Data Table widget to see the details of the

selected subset.

[sepal length
[0 sepal width
[petal length

Suggest Features
 Circular Placement

Linear Discriminant Analysis
Principal Component Analysis

Color: @ iris
Shape: (Same shape)
Size: (Same size)

Label: (No labels)

Label only selection and subset

Symbol size:
Opacity:
Jittering:
Hide radius:

+/ 150 [+ 10

8.9.3. References

Data D ® ® Data Table
component sepal length sepal width petal length
Data Tele 1 Cx 1.0 05 -05
2 Cy 0.0 0.866 -0.866
28 |3H2E2
%,
2
N
%
K]

P % sepal length
@

> oy,

2,
o,

Iris-setosa
@ Iris-versicolor

Iris-virginica

Koren Y., Carmel L. (2003). Visualization of labeled data using linear transformations.

In Proceedings of IEEE Information Visualization 2003, (InfoVis’03). Available here.

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile tool for the

analysis of high-dimensional ge- nomic data. Briefings in Bioinformatics, 8(1), 32-44.

Abstract here.

Leban G., Zupan B., Vidmar G., Bratko I. (2006). VizRank: Data Visualization Guided

by Machine Learning. Data Mining and Knowledge Discovery, 13, 119-136. Available

here.

Chapter 08 —Data visualization 229

EE Summary ~

1. The larger the size of the data (although the number of columns and rows)
makes it difficult to interpret and handle the data.

2. Data visualization refers to ways to represent data in different ways, such as
pictures, charts, and so on.

3. Box plots can be based on the data's representative values (Q1, Q2, median,
maximum, minimum, mean, standard deviation) and their distribution.

4. Violin plots can determine the distribution based on the value of the data.
Depending on the characteristics, you can compare at a glance how much data
iIs located in which data interval.

5. Distribution can tell the distribution of data based on each characteristic.

6. Heatmap expresses the relationship between each data in color, making it easy
to understand at a glance.

7. Scatter plots are often used to express the correlation of data. Because it is
represented in a plane based on two characteristics, it is easy to interpret the
relationship between the two data.

8. Line plots are often used to compare changes in data in time series data. You
can view and interpret the flow of data that changes over time or specific criteria.
9. Bar plot can be used to compare the size of the interval or discrete values of
the data. Although it can be utilized similarly to line plots, line plots are mainly
used to determine continuous value changes, and bar plots are used to compare
discrete values.

o °
" Questions ~

1. Explain why you need data visualization

2. What are the representative values that can be found in the box plot?

3. Which plot is most appropriate to determine the correlation between data
characteristics?

4. What is the difference between a bar plot and a line plot? Which data is more

appropriate for each representation?

230 Chapter 08 —Data visualization

C= Exercises

1. Load iris data from the Datasets widget and find out what the characteristics of
the data mean.

2. Express the number of data according to the flower variety in iris dataset as a
bar plot.

3. Check the representative value of the petal width using the box plot and explain
the characteristics of the data.

4. Analyse the correlation between the width and length of petals and the width
and length of sepal with a scatter plot, and interpret the relationship according to
the variety.

	Chapter 01-Introduction
	Chapter 02-Relational Model
	Chapter 03-Relational Language-SQL
	Chapter 04-Entity-Relationship Model
	Chapter 05 SQL
	Chapter 06 PHP
	Chapter 7-Data and Process
	Chapter 8-Data visualization

