

Chapter 01

Introduction

 In this chapter, you will learn:

1.1 Database and Database Systems

1.2 History

 1.2.1 File System

 1.2.2 Network and Hierarchical Databases

 1.2.3 Relational Databases

 1.2.4 Now and the Future

1.3 DBMS

 1.3.1 Structure

 1.3.2 Client/ Server and Web

In this chapter, we introduce good information that is derived from raw facts. These raw

facts are known as data. Data are likely to be managed most efficiently when they are

stored in a database. You will learn what a database is, and what it does. You will also

learn about various types of databases and why database design is so important as well.

File system data management is now largely understood as the characteristics of stored

file systems. Database and database management systems have become essential for

managing businesses, governments, schools, universities, banks, etc. Also in the chapter,

we will talk about the responsibility of a database administrator, and the architecture of

2-tier and 3-tier.

Chapter 01 – Introduction 3

1.1 Database and Database Systems

Data is the keyword to describe the systematic storage of data. Database

Management System (DBMS) is the collection of interrelated and persistent data and is a

set of application programs used to access, update and manage.

Since the computer was developed, it has been used in various fields as follows.

• computing machine = H/W + numerical analysis S/W

• database = H/W + database management system S/W

• automatic processing system = H/W + process control S/W

• typing machine = H/W + word processor

• game station = H/W + game S/W

• audio/video station= H/W + audio /video playing S/W

• telephone = H/W + voice networking S/W

• etc.

A database is systematic storage of data and a database management system is a system

software to build a computerized database.

A database management system consists of

• A collection of interrelated and persistent data is usually referred to as a database (DB).

• A set of application programs used to access, update and manage that data from the

database management system (DBMS).

The goal of a DBMS is to provide an environment that is both convenient and efficient to

use in

• Storing information into the database.

• Retrieving information from the database.

Databases are usually designed to manage large bodies of information as below:

4 Chapter 01 – Introduction

• Definition of structures for information storage (data modeling).

• Provision of mechanisms for the manipulation of information (file and systems

structure, query processing).

• Providing for the safety of information in the database (crash recovery and security).

• Concurrency control if the system is shared by users.

1.2 History

File Systems were types of data used to store, retrieve and update. The Data were stored

as a file system with complexity difficult to control then data models were developed. Those

models are the hierarchical model and the network model. The size of data usage increased

rapidly and also those models are difficult to use while relational databases have appeared.

1.2.1 File System

Databases have been historically an essential part of any information processing system.

The origins of databases go back to libraries, governmental, business, and medical records.

There is a very long history of information storage, indexing, and retrieval.

 Before the 1960s, file systems were used to store, retrieve and update data. The structure

is shown in Figure 1.1, and each department manages its files respectively.

To see why database management systems are necessary, let's look at a typical "file-

processing system" supported by a conventional operating system. The application is a

savings bank:

Figure 1.1 File System

Accounting
File

Accounting Department
ID Name Address Basic Salary Bonus

Personnel Department
Personal

File

ID Name Address Rank Evaluation

Personnel Record

Accounting Record

Chapter 01 – Introduction 5

• Savings account and customer records are kept in permanent system files.

• Application programs are written to manipulate files to perform the following tasks:

− Debit or credit an account.

− Add a new account.

− Find an account balance.

− Generate monthly statements.

 Development of the system proceeds as follows:

• New application programs must be written as the need arises.

• New permanent files are created as required.

• But over a long period files may be in different formats.

• Application programs may be in different languages.

 So we can see there are problems with the straight file-processing approach:

• Data redundancy and inconsistency

− Same information may be duplicated in several places.

− All copies may not be updated properly.

• Difficulty in accessing data

− May have to write a new application program to satisfy an unusual request.

− e.g. find all customers with the same postal code.

− Could generate this data manually, but a long job...

• Data isolation

− Data in different files.

− Data in different formats.

− Difficult to write new application programs.

• Multiple users

− Want concurrency for faster response time.

− Need protection for concurrent updates.

− E.g. two customers withdrawing funds from the same account at the same time -

account has $500 in it, and they withdraw $100 and $50. The result could be $350,

$400 or $450 if no protection.

• Security problems

− Every user of the system should be able to access only the data they are permitted

to see.

6 Chapter 01 – Introduction

− e.g. payroll people only handle employee records, and cannot see customer

accounts; tellers only access account data and cannot see payroll data.

− Difficult to enforce this with application programs.

• Integrity problems

− Data may be required to satisfy constraints.

− e.g. no account balance below $25.00.

− Again, difficult to enforce or change constraints with the file-processing approach

 These problems and others led to the development of database management systems.

1.2.2 Network and Hierarchical Databases

In the 1960s, computers become cost-effective for private companies along with the

increased storage capacity of computers. Databases (DB) and Database Management

Systems (DBMS) were developed. Figure 1.2 shows DB and DBMS.

 Two main data models were developed: the hierarchical model (IMS) and the network

model (CODASYL) in which access to the database is through low-level pointer operations

linking records. Storage details depended on the type of data to be stored. Thus adding an

extra field to the database requires rewriting the underlying access/modification scheme.

Figure 1.3 shows the hierarchical model and Figure 1.4 shows the network model.

Figure 1.2 DB and DBMS

Personnel Record

Accounting Record

Database Management

System (DBMS)

Personal Records
Accounting Records

Database (DB)

Chapter 01 – Introduction 7

 The emphasis in the above two models was on records to be processed, not the overall

structure of the system. A user would need to know the physical structure of the database

in order to query for information. One major commercial success was the SABRE system

from IBM and American Airlines.

 In the 1970s, several camps of proponents argue about the merits of these competing

systems while the theory of databases leads to mainstream research projects. Two main

prototypes for relational systems were developed during 1974-77.

1.2.3 Relational Database

In 1970-72, E.F. Codd at IBM proposed a relational model for databases in a landmark

paper on how to think about databases. He disconnects the schema (logical organization)

Figure 1.3 Hierarchical model

Figure 1.4 Network model

Deposit link

8 Chapter 01 – Introduction

of a database from the physical storage methods. This system has been standard ever since.

In the relational model, records are stored only in tables shown in Figure 1.5.

• Ingres: Developed· at UCB (University of California, Berkeley). This ultimately led

to Ingres Corp., Sybase, MS -SQL Server,. This system used QUEL as query language.

• System R: Developed at IBM (International Business Machines) San Jose and led to

IBM's SQL/DS and DB2, Oracle, HP's Allbase, Tandem's Non-Stop SOI-,. This system

used SEQUEL as query language.

 These systems provide nice examples of how theory leads to best practice. The term

Relational Database Management System (RDBMS) is coined during this period.

 In 1976, P. Chen proposed the Entity-Relationship (ER) model for database design

giving yet another important insight into conceptual data models. Such higher-level

modeling allows the designer to concentrate on the use of data instead of logical table

structure.

 In the early 1980s, the commercialization of relational systems begins as a boom in

computer purchasing fueled the DB market for business. In the mid-1980s, SQL (Structured

Query Language) becomes the "intergalactic standard", and DB2 becomes IBM's flagship

product.

 Network and hierarchical models fade into the background, with essentially no

development of these systems today but some legacy systems are still in use. Development

of the IBM PC gives rise to many DB companies and products such as RIM, RBASE 5000,

PARADOX, OS/2 Database Manager, Dbase III, IV (later Foxbase, even later Visual

FoxPro), Watcom SQL.

Figure 1.5 Relational model

Chapter 01 – Introduction 9

 In the early 1990s, an industry shakeout begins with fewer surviving companies

offering increasingly complex products at higher prices. Much development during this

period centers on client tools for application development such as PowerBuilder (Sybase),

Oracle Developer, VB (Microsoft), etc. The client-server model for computing

becomes the norm for future business decisions. Development of personal productivity

tools such as Excel/Access (MS) and ODBC. This also marks the beginning of Object

Database Management Systems (ODBMS) prototypes.

 In the mid-1990s, the usable Internet/WWW appears. A mad scramble ensues to allow

remote access to computer systems with legacy data. Client-server frenzy reaches the

desktop of average users with little patience for complexity while Web/DB grows

exponentially.

1.2.4 Now and the Future

In the late ‘90s, the large investment in Internet companies fueled tools market boom for

Web/Internet/DB connectors. Active Server Pages, Front Page, Java Servlets, JDBC,

Enterprise Java Beans, ColdFusion, Dream Weaver, Oracle Developer 2000, etc. are

examples of such offerings. Open-source solutions come online with the widespread use of

GCC, CGI, Apache, MySQL, etc. Online Transaction processing (OLTP) and online

analytic processing (OLAP) comes of age with many merchants using point-of-sale (POS)

technology on a daily basis.

 In the early 21st century, the decline of the Internet industry as a whole but solid growth

of DB applications continues. More interactive applications appear with the use of PDAs,

POS transactions, consolidation of vendors, etc. Three main (western) companies

predominate in the large DB market: IBM (buys Informix), Microsoft, and Oracle.

 Future trends show that huge (terabyte) systems are appearing and will require novel

means of handling and analyzing data. Large science databases such as genome projects,

geological, national security, and space exploration data. Clickstream analysis is happening

now. Data mining, data warehousing, and data marts are commonly used techniques today.

More of this in the future without a doubt. Smart/personalized shopping using purchase

history, time of day, etc.

 Successors to SQL (and perhaps RDBMS) will be emerging in the future. Most attempts

to standardize SQL successors have not been successful. SQL92, SQL2, and SQL3 are still

underpowered and more extensions are hard to agree upon. Most likely this will be

10 Chapter 01 – Introduction

overtaken by other emerging techniques. XML with Java for databases is the current poster

child of the "next great thing". Check-in tomorrow to see what else is news.

 Mobile database use is a product now coming to market in various ways. Distributed

transaction processing is becoming the norm for business planning in many arenas.

 Probably there will be a continuing shakeout in the RDBMS market. Linux with Apache

supporting MySQL (or even Oracle) on relatively cheap hardware is a major threat to high-

cost legacy systems of Oracle and DB2 so these have begun pre-emptive projects to hold

onto their customers.

 Object Oriented Everything, including databases, seems to be always on the verge of

sweeping everything before it. Object Database Management Group(ODMG) standards are

proposed and accepted and maybe something comes from that.

 Ethical/security/use issues tend to be diminished at times but always come back. Should

you be able to consult a database of the medical records/genetic makeup of a prospective

employee? Should you be able to screen a prospective partner/lover for genetic diseases?

Should amazon.com keep track of your book purchasing? Should there be a national

database of convicted sex offenders/violent criminals /drug traffickers? Who is allowed to

do Web tracking? How many times in the last six months did you visit a particular sex chat

room/porn site/political satire site? Who should be able to keep or view such data? Who

makes these decisions? The history of database research is shown in Figure 1.6.

1.3 DBMS

The evolution of DBMS and a broad spread rapidly to improve data sharing, reduce data

redundancy, and are also a program data independence. The responsibility of the database

administrator (DBA) and the architecture of 2-tier, 3-tier, and n-tier are described in the

point as well.

1.3.1 Structure

A DBMS can be an extremely complex set of software programs that controls the

organization, storage, and retrieval of data (fields, records, and files) in a database. The

basic functionalities that a DBMS must provide are:

1. A model language to define the schema of each database hosted in the DBMS, according

to the DBMS data model.

Chapter 01 – Introduction 11

2. Data structures optimized to deal with big amounts of data recorded to a permanent data

storage device, which are very slow compared to the primary storage (volatile main

memory).

3. A database query language and report writer to allow users to interactively interrogate

the database, analyze its data and update it according to the users’ privileges on data.

4. A transaction mechanism, that ideally would guarantee the ACID properties, in order

to ensure data integrity despite concurrent user access (concurrency control) and faults

(fault tolerance).

The DBMS accepts requests for data from the application program and instructs the

operating system to transfer the appropriate data. The overall structure of the DBMS is

shown in Figure 1.7

Web-based Databases Systems

(1990s- present) □

- XML-based database systems

- Web mining

Figure 1.6 the history of database

research

12 Chapter 01 – Introduction

The data structures in the database are as follows.

− data files: store the data.

− indices: provide for fast access to data items.

− data dictionary (= System catalog): store info about the structure of the DB.

− statistical data: store info about the statistical data in the DB.

− log file: store the insertion/deletion/update of the relations for recovery when a system

crash happens.

 Data abstraction

The DBMS provides users with tables by using layered abstraction shown in Figure 1.8

Chapter 01 – Introduction 13

 The major purpose of a database system is to provide users with an abstract view of the

system. The system hides certain details of how data is stored and created and maintained.

Complexity should be hidden from database users.

There are several levels of abstraction from the bottom to the top:

 1. Physical Level:

− Lowest level of abstraction.

− How the data are stored.

− e.g. index, B-tree, hashing.

− Complex low-level structures described in detail.

 2. Conceptual Level:

− Next highest level of abstraction.

− Describes what data are stored.

− Describes the relationships among data.

− Database administrator level.

Figure 1.8 DBMS tables by using layered abstraction

14 Chapter 01 – Introduction

 3. View Level:

− Highest level.

− Describes part of the database for a particular group of users.

− Can be many different views of a database.

− E.g. tellers in a bank get a view of customer accounts, but not of payroll data.

When a DBMS is used, information systems can be changed much more easily as the

organization's information requirements change. New categories of data can be added to

the database without disruption to the existing system.

DBA

A database administrator (DBA) manages the database and the DBMS shown in Figure 1.7.

The tasks performed by the DBA are categorized as follows.

− DBMS management

− database management

− object management: tables /views/indices/clusters etc.

− user management

− performance tuning/backup

Organizations may use one of kind of DBMS for daily transaction processing and then

move the detail onto another computer that uses another DBMS better suited for random

inquiries and analysis. Overall systems design decisions are performed by data

administrators and systems analysts. Detailed database design is performed by data

administrators.

Figure 1.9 The three levels of data abstraction

Chapter 01 – Introduction 15

Database servers are specially designed computers that hold the actual databases and

run only the DBMS and related software. Database servers are usually multiprocessor

computers with RAIQ (Redundant Arrays of Independent Disks) disk arrays used for stable

storage.

Connected to one or more servers via a high-speed channel, hardware database

accelerators are also used in large-volume transaction processing environments. The

instance of the Oracle server is shown in Figure 1.10

A number of background processes are run in the main memory.

− DBW: Database Writer

− LGWR: Log Writer

− SMON: System Monitor

− CKPT: Checkpoint

− ARCn: Archiver

− Dnnn: Dispatcher

− RECO: Recoverer

− PMON: Process Monitor

− LCK0: Lock

Figure 1.10 the Oracle DBMS Server

16 Chapter 01 – Introduction

− SNPn: Job Queue

− QMNn: Queue Monitor

1.3.2 Client/Server and Web

Through the appearance of Local-Area-Networks, PCs came out of their isolation, and were

soon not only being connected mutually but also to servers.

 Client/Server-computing was born. Servers today are mainly file and database servers;

application servers are the exception. However, database servers only offer data on the

server; consequently, the application intelligence must be implemented on the PC (client).

Since there are only the architecturally tiered data server and client, this is called 2-tier

architecture.

This model is actually the opposite of its popular terminal-based predecessor that had

its entire intelligence on the host system. The 2-tier and 3-tier client/server models are

shown in Figure 1.11.

 One reason why the 2-tier model is so widespread is because of the quality of the tools

and middleware that has been most commonly used since the ‘90s: Remote­ SQL, ODBC,

Figure 1.11 the 2-tier and 3-tier client/server models

Chapter 01 – Introduction 17

relatively inexpensive and well-integrated PC tools (like Visual Basic, Power-Builder, MS

Access, 4-GL-Tools by the DBMS manufactures).

In comparison, the server side uses relatively expensive tools. In addition, the PC-based

tools show good Rapid-Application-Development (RAD) qualities i.e. those simpler

applications can be produced in a comparatively short time. The 2-tier model is the logical

consequence of the RAD tools’ popularity: for many managers, it was simpler to attempt

to achieve efficiency in software development using tools, than to choose the steep and

stony path of "brainware".

Why 3-tier?

Unfortunately, the 2-tier model shows striking weaknesses that make the development

and maintenance of such applications much more expensive. The software connection of

the 2-tier model is shown in Figure 1.12, and the problems are listed below.

• The complete development accumulates on the PC. The PC processes and presents

information which leads to monolithic applications that are expensive to maintain.

That's why it's called a "fat client".

• In the 2-tier architecture, business. -logic is implemented on the PC. Even though the

business logic never makes direct use of the windowing system, programmers have to

be trained for the complex API under Windows.

Figure 1.12 the software connection in the 2-tier model

18 Chapter 01 – Introduction

• Windows OS and Mac systems have tough resource restrictions. For this reason,

application programmers also have to be well trained in systems technology, so that

they can optimize scarce resources.

• Increased network load: since the actual processing of the data takes place on the remote

client, the data has to be transported over the network. As a rule, this leads to increased

network stress.

• How to conduct transactions is controlled by the client. Advanced techniques like two-

phase-committing can't be run.

• PCs are considered to be "untrusted" in terms of security, i.e. they are relatively easy to

crack. Nevertheless, sensitive data is transferred to the PC, for lack of an alternative.

• Data is only "offered" on the server, not processed. Stored procedures are a form of

assistance given by the database provider. But they have a limited application field and

proprietary nature.

• Application logic can't be reused because it is bound to an individual PC- program.

• The influences on change-management are drastic: due to changes in business

• politics or law (e.g. changes in VAT computation) processes have to be changed. Thus

possibly dozens of PC-programs have to be adapted because the same logic has been

implemented numerous times. It is then obvious that in turn each of these programs has

to undergo quality control because all programs are expected to generate the same

results again.

• The 2-tier-model implies a complicated software-distribution procedure: as all of the

application logic is executed on the PC, all those machines (maybe thousands) have to

be updated in case of a new release. This can be very expensive, complicated, prone to

error, and time-consuming. Distribution procedures include the distribution over

networks (perhaps of large files) or the production of adequate media like CDs. Once

it arrives at the user's desk, the software first has to be installed and tested for correct

execution. Due to the distributed character of such an update procedure, system

management cannot guarantee that all clients work on the correct copy of the program.

The 3-tier architecture endeavor to solve these problems. This goal is achieved

primarily by moving the application logic from the client back to the server.

Chapter 01 – Introduction 19

 What are 3-tier and n-tier architecture?

 The 3-tier architecture is illustrated in Figure 1.13.

• Client tier

This tier is responsible for the presentation of data, receiving user events, and

controlling the user interface. The actual business logic (e.g. calculating added value tax)

has been moved to an application server. Today, web server scripts such as PHP and JSP

offer an alternative to traditionally written PC applications.

• Application Server-tier

This tier is new, i.e. it isn't present in 2-tier architecture in this explicit form. Business

objects that implement the business rules "live" here, and are available to the client tier.

This level now forms the central key to solving 2-tier problems. This tier protects the data

from direct access by the clients.

The object-oriented analysis "OOA", on which many books have been written, aims in

this tier: to record and abstract business processes in business objects. This way it is

possible to map out the applications-server-tier directly from the CASE­ tools that support

OOA.

Furthermore, the term “component" is also to be found here. Today the term pre­

dominantly describes visual components on the client side. In the non-visual area of the

Figure 1.13 the 3-tier architecture

20 Chapter 01 – Introduction

system, components on the server side can be defined as configurable objects, which can

be put together to form new application processes.

• Data Server-tier

This tier is responsible for data storage. Besides the widespread relational database

systems, existing legacy systems databases are often reused here.

It is important to note that boundaries between tiers are logical. It is quite easily possible

to run all three tiers on one and the same (physical) machine. The main importance is that

the system is neatly structured and that there is a well-planned definition of the software

boundaries between the different tiers.

 The advantage of 3-tier architecture

As previously mentioned, 3-tier architecture solves a number of problems that are inherent

to 2-tier architectures. Naturally, it also causes new problems, but these are outweighed by

the advantages. The software connection of the 3-tier model is shown in Figure 1.14, and

the advantages are listed below.

• Clear separation of user-interface control and data presentation from application logic.

Through this separation, more clients are able to have access to a wide variety of server

applications. The two main advantages for the client- applications are clear: quicker

development through the reuse of pre-built business-logic components and a shorter

test phase, because the server­ components have already been tested.

Figure 1.14 the software connection of the 3-tier model

Chapter 01 – Introduction 21

• Re-definition of the storage strategy won't influence the clients. RDBMS offers certain

independence from storage details for the clients. However, cases like changing table

attributes make it necessary to adapt the client's application. In the future, even radical

changes, like let's say switching from an RDBMS to an OODBS, won’t influence the

client. In well-designed systems, the client still accesses data over a stable and well-

designed interface that encapsulates all the storage details.

• Business objects and data storage should be brought as close together as possible,

ideally they should be together physically on the same server. This way - especially

with complex accesses - network load is eliminated. The client only receives the results

of a calculation - through the business object, of course.

• In contrast to the 2-tier model, where only data is accessible to the public, business

objects can place applications-logic or "services" on the net. As an example, an

inventory number has a "test digit", and the calculation of that digit can be made

available on the server.

• As a rule servers are "trusted" systems. Their authorization is simpler than that of

thousands of "untrusted" client PCs. Data protection and security is simpler to obtain.

Therefore it makes sense to run critical business processes that work with security-

sensitive data, on the server.

• Dynamic load balancing: if bottlenecks in terms of performance occur, the server

process can be moved to other servers at runtime.

• Change management: of course, it's easy - and faster - to exchange a component on the

server than to furnish numerous PCs with new program versions. For example, it is

quite easy to run the new version of a tax object in such a way that the clients

automatically work with the version from the exact date that it has to be run. It is,

however, compulsory that interfaces remain stable and that old client versions are still

compatible. In addition, such components require a high standard of quality control.

This is because low quality components can, at worst, endanger the functions of a whole

set of client applications. At best, they will still

irritate the operator of the system.

Further, it is relatively simple to use wrapping techniques in 3-tier architecture. As

implementation changes are transparent from the viewpoint of the object's client, a forward

strategy can be developed to replace the legacy system smoothly. First, define the object's

interface. However, the functionality is not newly implemented but reused from an existing

22 Chapter 01 – Introduction

host application. That is, a request from a client is forwarded to a legacy system and

processed and answered there.

In a later phase, the old application can be replaced by a modem solution. If it is possible

to leave the business object’s interfaces unchanged, the client application remains

unaffected. A requirement for wrapping is, however, that a procedure interface in the old

application remains existent. It isn’t possible for a business object to emulate a terminal. It

is also important for the project planner to be aware that the implementation of wrapping

objects can be very complex.

DB Programming on the Web

Just as there is a diversity of programming languages available and suitable for

conventional programming tasks, there is a diversity of languages available and suitable

for Web DB programming. There is no reason to believe that any one language will

completely monopolize the Web programming scene, although the varying availability and

suitability of the current offerings are likely to favor some over others. Several Web

programming languages are currently available to implement the application logic

component in Figure 1.14.

Java is both available and generally suitable, but not all application developers are likely

to prefer it over languages more similar to what they currently use, or, in the case of non-

programmers, over higher level languages and tools. This is OK because there is no real

reason why we must converge on a single programming language for the Web any more

than we must converge on a single programming language in any other domain.

The Web does, however, place some specific constraints on our choices: the ability to

deal with a variety of protocols and formats (e.g. graphics) and programming tasks;

performance (both speed and size); safety; platform independence; protection of

intellectual property; and the basic ability to deal with other Web tools and languages.

These issues are not independent of one another. A choice that seemingly is optimal in one

dimension may be sub-optimal or worse in another.

Chapter 01 – Introduction 23

• CGI (Common Gateway Interface)

A Web daemon executes a CGI program on the server and returns the results to the

client (e.g. a query against a database server), rather than simply returning a copy of the

referenced file, as it does with an HTML reference. Parameters are passed from the server

to the CGI program as environment variables.

The program is sometimes written in C, C++, or some other compiled programming

language, but more often it is written in a scripting language (e.g. Perl, Tel, sh). To prevent

damage to the server, CGI programs generally are stored in a protected directory under the

exclusive control of the webmaster.

• Java

Java is the leading contender for a full feature programming language targeted at

Internet applications. It’s advantages are: familiarity (derived from C++), platform

independence (will run on any platform which implements the Java Virtual Machine),

performance (byte-code compiled faster than fully interpreted), and safety (downloaded

applets are checked for integrity, and only interpreted by trusted Virtual Machine).

Java is being aggressively distributed and promoted by Sun Microsystems (Oracle Co.),

which developed it, and, evidently, sees it as a way to loosen Microsoft's and Intel's grip on

the computer platform. The leading web browsers, now includes the Java VM, and

JavaScript/JSP are appearing on web sites everywhere. Even Microsoft, which is promoting

Visual Basic Script for this purpose, has licensed Java from Sun and will be supporting it

in its browsers.

The list of Java licensees is long, and includes other major players, such as IBM. Sun

(Oracle Co.), is distributing a Java developer's kit free of charge as of this writing, in the

interest of promoting Java's widespread use. It recently announced the development of

microprocessors optimized for Java for different markets (from cellular phones to high

performance 3D "Network Appliances". If their strategy is successful, the application

platform is raised, and Java displaces Windows or other OS's as the target platform of

application developers, then the whole ballgame changes, and the impact is potentially

across the entire computer industry, not just the Internet.

24 Chapter 01 – Introduction

The ability to deliver a platform-independent application, or, more correctly, an OS-

independent application, is of great appeal to developers, who spend a large portion of their

resources developing and maintaining versions off their products for the different

hardware/software platform combinations. With Java, one set of sources, and, even more

important, one byte-compiled executable, can be delivered for all hardware/software

platforms.

While the interpretation of a byte-compiled program is slower than the execution of a

native executable, the claim is made that, once interpreted, the resulting executable is of

comparable performance, which means Java applications could be interpreted once and the

result cached locally and thereafter executed optimally. This is great news for Unix, OS/2,

and Macintosh vendors and users, who often suffer from limited or delayed availability of

software and high prices due to limited demand, and, likewise, for non-Intel chip and

computer vendors.

Chapter 01 – Introduction 25

It is potentially disastrous news for Microsoft and Intel, who, arguably, often sell their

products solely based on their market position, rather than their technical merit. Hopefully,

the result will be a more level playing field for vendors and more choices for consumers

and not just the replacement of Microsoft and Intel with Sun (Oracle Co.).

That said, not everyone agrees that Java is the answer. The most common complaint is

that Java is not simple; it is a slimmed-down, cleaned-up C++, with a big GUI library. C++

programming is not described by most as "simple", and Java programming is not much

simpler, especially when compared to HTML, or some other languages put forward as its

competition. Java is the market leader at the moment, so it is the obvious target.

• JavaScript

JavaScript is Netscape's scripting language for integrating HTML, Netscape plug-ins,

and Java applets. It is based on Java, and is mostly syntactically compatible, but differs

from Java in that it is interpreted, rather than compiled, only supports built certain built-in

objects and user-defined functions, rather than full support for user-defined classes with

inheritance and methods, and is integrated with HTML, rather than invoked from HTML

files, weakly typed, and dynamically bound.

JavaScript is meant to extend HTML to be more of a full programming language while

retaining HTML's ease of use. The principal criticism of Java programming is that much

more complex than HTML programming, more like C++ programming, and therefore is

not as accessible to users as HTML. This is an issue that JavaScript attempts to address.

26 Chapter 01 – Introduction

• Python

Python is an interpreted, object-oriented language developed as a full-featured, but

easy-to-use, scripting language, by Guido van Rossum at CWI in the Netherlands. Initially

developed in a Unix environment, Python is now available on PCs and Macs, and

applications are portable across platforms.

Python has developed a substantial, although still modest, following, as a scripting

language, an application development language, and an embedded extension language.

Python's design was most influenced by ABC, a little-known language also developed at

CWI. Python's syntax evokes C and C++ but doesn't stick too closely to those languages.

Python fans tout its clear, intuitive syntax in comparison to C, C++, Java, Perl, shell

languages, and most other interpreted languages, the completeness of its type system and

its suitability for significant application development in comparison to Tcl, and its

extensibility with Python and C/C++ libraries. Like Java, Perl and Tcl, Python offers a

portable GUI library, several.

Perl advocates complain about the lack of regular expression matching and output

formatting natively in Python. Perl is a little more of a sysadmin's shell language than

Python, and Tcl is a little simpler and less capable. Python is more of a regular

programming language, but simpler and easier to program than Java. But, all are suited to

Internet programming.

• VBScript (Visual Basic Script)

VBScript is Microsoft's planned candidate for an Internet scripting language. It is a

subset of Visual Basic, Microsoft's popular visual programming language, with no GUI

building capability, unsafe operations removed, and with access to other applications via

OLE.

VBScript source code is embedded in HTML and downloaded to the client in the

HTML file, where it is compiled and executed in association with its runtime libraries.

Microsoft envisions an OLE Scripting Manager on the client side with which browsers

interact with a specified interface. The Scripting Manager would manage the compilation

and invocation of downloaded scripts in Visual Basic Script or any other scripting

language.

Chapter 01 – Introduction 27

Microsoft also intends to support Visual Basic and Java in this way. The idea is to make

multiple language runtimes pluggable into browsers. Microsoft intends to elicit the

cooperation of various consortia and vendors in defining and standardizing this interface.

Microsoft intends to support VBScript on its various Windows platforms and the Macintosh

and will license the technology to UNIX vendors.

• PHP (PHP Hypertext Pre-processor) Server Side Script

In the early days of the spread of the Internet, websites were created using Perl language

and C language. However, the problem with the Perl language and the C language is that it

is inefficient and very difficult to develop. The biggest problem with the Perl language and

the C language is the processing method. Each time a client connects one by one, a process

is created. Therefore, as the number of connections increases, overload occurs more

frequently, and the server often goes down.

Therefore, various Web script languages have been developed to supplement the above

problems and provide faster service. Microsoft's ASP, Sun's JSP, and Zend's PHP are

famous Web scripting languages. In the above three languages, when a client connects one

by one, it creates a process first and then creates a thread in it to respond. Since tasks are

processed in units of threads, the load on the server is reduced. PHP is developed in the C

language, so its syntax is similar to C and its execution speed is also fast.

Because PHP is free, it does not cost money to use, and it is independent of the platform

by supporting multiple OSs such as Windows, Linux, and Unix. Also, it runs a bit faster on

Linux, a free OS, and is called APM (Apache/PHP/MySQL) because it works well with

MySQL, a free RDBMS. Usually, PHP works in conjunction with a web server called

Apache. When a user requests a web document, Apache processes the HTML document,

and PHP processes the PHP Script.

28 Chapter 01 – Introduction

 The efficient storage and manipulation of data is the major goal of the database

management system. A database is an organized collection of related data. Only data

that has been processed provides meaningful information that enables an organization

to make critical decisions. Large data files were stored, processed, and retrieved using

computer file processing systems before DBMS. Computer file processing systems

have limitations such as data duplications, limited data sharing, and no program data

independence. A database technique was created to get around these restrictions.

Program data independence, improved data sharing, and reduced data redundancy are

the major benefits of the DBMS method. This chapter has provided a general

overview of DBMS as well as its historical development. The responsibilities of a

Database administrator, two-tier, and three-tier architecture were analyzed in this

chapter.

Summary

1. What is the data?

2. What is the information?

3. What are the different between data and information?

4. What are the disadvantages of the file processing system?

5. What is the Database? Give an example

6. What is the DBMS?

7. What are the advantages of the DBMS?

Questions

Chapter 01 – Introduction 29

1. Please look at figure 1.13 the 3-tier architecture from the textbook and a

summary of its processing.

2. Please summary of the role of a database administrator (DBA).

3. Please draw about 2-tier client/server architecture and 3-tier client/ server

 architecture and explain in brief.

4. Please explore on the internet to find the various categories of

 the data model and explain them in brief.

Exercises

Chapter 02

Relational Model

In this chapter, you will learn:

2.1 Overview

2.2 Relation

2.3 Database Scheme

2.4 Keys

2.5 Relational Algebra

 2.5.1 Fundamental Operations

 2.5.2 Additional Operations

2.6 The Tuple Relational Calculus

This chapter is dedicated to the relational model which is in use since the late 1970s by E.F.

Codd (Edgar Frank Codd). Various operations in relational algebra and relational calculus are

given in this chapter. After completing this chapter, the reader should be familiar with the

following concepts of evolution and the importance of the relational model, terms in the

relational model like tuple, domain, cardinality, and degree of relation, and operations in

relational algebra and relational calculus, the difference between relational algebra and

relational calculus.

Chapter 02 – Relational Model 33

2.1. Overview

The relational model for large shared data is written by E.F. Codd (Edgar Frank Codd) of

IBM in 1970.

The first database systems were based on network and hierarchical models. The relational

model was first proposed by E.F. Codd in 1970 and the first such systems (notably INGRES

and System/R) were developed in the 1970s. The relational model is now the dominant model

for commercial data processing applications.

A relational database consists of a collection of tables, each having a unique name. A

row in a table represents a relationship among a set of values. Thus, a table represents a

collectin of relationships. There is a direct correspondence between the concept of a table and

the mathematical concept of a relation. A substantial theory has been developed for relational

databases.

The text uses long attribute names instead of abbreviation words in the notes as follows.

• customer-name instead of cname

• customer-city instead of ccity

• branch-city instead of bcity

• branch-name instead of bname

• account-number instead of account#

• loan-number instead of loan#

• banker-name instead of banker

The terms commonly used by the user, model, and programmers are given below:

User Model Programmer

Row Tuple Record

Column Attribute Field

Table Relation File

2.2. Relation

Mathematicians define a relation to be a subset of a Cartesian product of a list of domains.

Mathematic terms ‘relation’ and ‘tuple’ is placed of ‘table’ and ‘row’ that are used for the

relational model.

We can add, delete and modify rows to reflect changes in the real world. A row of a table

will consist of an n-tuple where n is the number of attributes. Actually, the table contains

34 Chapter 02 – Relational Model

a subset of the set of all possible rows. We refer to the set of all possible rows as the

Cartesian product of the sets of all attribute values.

• Figure 2.1 shows the Deposit and Customer tables for our banking example

• The deposit table has four attributes.

• For each attribute there is a permitted set of values, called the domain of that attribute.

• E.g. the domain of bname is the set of all branch names.

 Let D1 denote the domain of bname, and D2, D3, and D4 the remaining attributes'

domains respectively. We may denote this as

 D, X D2 X D3 X D4

 for the deposit table, where D1, D2, D3, and D4 denote the set of all branch names, all

account numbers, all customer names and all balances, respectively.

In general, for a table of n columns, we may denote the Cartesian product of D1, D2 ,

Dn by

 xn
i=1 Di

Then, any row of the deposits consisting of a four-tuple (v1, v2, V3, V4)

 v1  D1, v2  D2, v3  D3, v4  D4

In general, a deposit contains a subset of the set of all possible rows. That is, a deposit is a

subset of

 D1 x D2 x D3 x D4 or abbreviated to x4
i=1 Di

In general, a table of n columns must be a subset of

 xn
i=1Di (all possible rows)

 Mathematicians define a relation to be a subset of a Caresian product of a list of domains.

You can see the correspondence with our tables. The mathematical terms 'relation' and

'tuple' in place of 'table' and 'row' are used for the relational model.

Figure 2.1 the Deposit and Customer relations

Chapter 02 – Relational Model 35

 Some more formalities:

• Let the tuple variable t refer to a tuple of the relation R.

• We say tR to denote that the tuple t is in relation to R.

 For the first tuple t in relation to deposit,

• Then t[bname] = t[1] = the value of t on the bname attribute.

• So t[bname] = t[1] = "Downtown",

• and t[cname] = t[3] = "Johnson".

 We'll also require that the domains of all attributes be indivisible units.

• A domain is atomic if its elements are indivisible units.

• For example, the set of integers is an atomic domain.

• The set of all sets of integers is not.

• Why? Integers do not have subparts, but sets do, the integers comprising them

• We could consider integers non-atomic if we thought of them as ordered lists of

digits.

2.3. Database Scheme

The difference between logical design (a database scheme) and structure of a database file

(database instance). The relation between all attributes and domains is called a relation

scheme.

We distinguish between a database scheme (logical design) and a database instance (data

in the database at a point in time). A relation scheme is a list of attributes and their

corresponding domains. For example, the relation scheme for the deposit relation:

 Deposit-scheme= (bname, account# , cname, balance)

We may state that deposit is a relation on scheme Deposit-scheme by writing

deposit(Deposit-scheme). If we wish to specify domains, we can write:

 (bname: string, account#: integer, cname: string, balance: integer).

 Note that customers are identified by name. In the real world, this would not be allowed,

as two or more customers might share the same name. Figure 2.2 shows the E-R diagram

for a banking enterprise.

36 Chapter 02 – Relational Model

 The relation schemes for the banking example used throughout the text are:

Branch-scheme = (bname, assets, bcity)

Customer-scheme= (cname, street, ccity)

Deposit-scheme= (bname, account#, cname, balance) Borrow-scheme =

(bname, loan#, cname, amount)

 Some attributes appear in several relation schemes (e.g. bname, cname). This is legal

and provides a way of relating tuples of distinct relations. Why not put all attributes in one

relation?

Suppose we use one large relation instead of customer and deposit:

Account-scheme= (bname, account#, cname, balance, street, ccity)

• If a customer has several accounts, we must duplicate her or his address for each

account.

• If a customer has an account but no current address, we cannot build a tuple, as we have

no values for the address.

• We would have to use null values for these fields.

• Null values cause difficulties in the database.

• By using two separate relations, we can do this without using null values

2.4. Keys

A super key is a set of attributes that uniquely identify each tuple of a relation. A candidate

key is a super key with no redundant attributes known as a candidate key i.e should not

contain any column that contains duplicate data. A primary key is a specific choice of a

minimal set of attributes (columns) that uniquely specify a tuple (row).

Figure 2.2 E-R diagram for the banking enterprise

Chapter 02 – Relational Model 37

More formally, if we say that a subset k of a relation R is a superkey for R, we are restricting

consideration to relations r(R) in which no two distinct tuples, t1 and t2, have the same

values on all attributes ink. In other words,

• If t1 and t2 are in r, and t1 ≠ t2, then t1[k] ≠ t2[k].

The notions of super key, candidate key, and primary key all apply to the relational

model. For example, in Branch-scheme,

• {bname} is a superkey.

• {bname, bcity} is a superkey.

• {bname, bcity} is not a candidate key, as the superkey {bname} is contained in it.

• {bname} is a candidate key.

• {bcity} is not a superkey, as branches may be in the same city.

• We will use {bname} as our primary key. The primary key to Customer-scheme is

{cname}.

2.5. Relational Algebra

Requesting information from a database by the user is used query language. Relational

Algebra was procedural is used in this language. There are a lot of operations in this

language such as select, project, rename, Cartesian product, union, and set-difference.

Moreover, there are additional functions as well like set-intersection, natural join, division,

and assignment.

A query language is a language in which a user requests information from a database. These

are typically higher-level than programming languages. They may be one of:

• Procedural, where the user instructs the system to perform a sequence of operations on

the database. This will compute the desired information.

• Nonprocedural, where the user specifies the information desired without giving a

procedure for obtaining the information.

A complete query language also contains facilities to insert and delete tuples as well as

to modify parts of existing tuples. Relational algebra is a procedural query language, and

operations produce a new relation as a result.

Six fundamental operations:

• select (unary): σp (R) (P a predicate)

• project (unary): πs (R) (S a list of attributes)

• rename (unary): ρx (R) (X a relation name)

• Cartesian product (binary): RxS

• union (binary): RυS

• set-difference (binary): R-S

Several other operations are defined in terms of the fundamental operations:

• set-intersection: RՈS

• natural join: R∞S

• division: R÷S

• assignment: R S

38 Chapter 02 – Relational Model

2.5.1. Fundamental Operations

 Select

The select operation selects tuples that satisfy a given predicate. Select is denoted by a

lowercase Greek sigma (Ϭ), with the predicate appearing as a subscript. The argument

relation is given in parentheses following the Ϭ.

Let Figure 2.3 be the Borrow and Brach relations in the banking operations

For example, to select tuples (rows) of the borrow relation where the branch is "SFU", we

would write

 Ϭ bname=' SFU' (Borrow)

 The new relation created as the result of this operation consists of one tuple:

 (SFU, 15, Hayes, 1500) .

We allow comparisons using =, ≠, <, ≤, >, and ≥ in the selection predicate. We also allow

the logical connectives v (or) and/\ (and). For example:

 Ϭ bname=' Downtown ' ۸ amount>1200 (Borrow)

Suppose there is one more relation, Client, shown in Figure 3.4, with the scheme

Client_scheme = (cname, banker)

We might write to find clients who have the same name as their banker.

 Ϭ cname=banker (Client)

Figure 2.3 the Borrow and Brach relation

Figure 2.4 the client relation

Chapter 02 – Relational Model 39

 Project

The project operation copies its argument relation for the specified attributes only. Since a

relation is a set, duplicate rows are eliminated. Projection is denoted by the Greek capital

letter pi (IT). The attributes to be copied appear as subscripts.

For example, to obtain a relation showing Customers and Branches, but ignoring amount

and loan#, we write

πbname, cname (Borrow)

 We can perform these operations on the relations resulting from other operations. To

get the names of customers having the same name as their bankers,

πcname (Ϭ cname=banker (Client))

 Think of selecting as taking rows of a relation, and project as taking columns of a

relation.

Cartesian Product

 The Cartesian product operation of two relations is denoted by a cross (x), written

 R1 x R2 for relations R1 and R2

 The result of R1 x R2 is a new relationship with a tuple for each possible pairing of

tuples from R1 and R2. In order to avoid ambiguity, the attribute names have attached to

them the name of the relation from which they came. If no ambiguity will result, we drop

the relation name. The result Client x Customer is a very large relation as shown in Table

2.1.

If R1 has n1 tuples, and R2 has n2 tuples, then R = R1 x R2 will have n1·n2 tuples. The

resulting scheme is the concatenation of the schemes of R1 and R2, with relation names

added as mentioned.

To find the clients of banker Johnson and the city in which they live, we need information

on both Client and Customer relations. We can get this by writing

Ϭ banker = ' Johnson ' (Client X Customer)

 However, the Customer.cname column contains customers of bankers other than

Johnson. Therefore, we want rows where Client.cname = Customer.cname. So we can write

Table 2.1 the Client x Customer relation

40 Chapter 02 – Relational Model

Ϭ banker = ' Johnson' /\ Client.cname = Customer.cname (Client X Customer)

 to get just these tuples.

 Finally, to get just the customer's name and city, we need a projection:

πclient.cname, ccity(Ϭ banker = ' Johnson' ۸ Client.cname = Customer.cname (Client X Customer))

 Rename

The rename operation solves the problems that occur with naming when performing the

Cartesian product of relation with itself. Suppose we want to find the names of all the

customers who live on the same street and in the same city as Smith. We can get the street

and city of Smith by writing

π street,ccity(σ cname = 'Smith' (Customer))

 To find other customers with the same information, we need to reference the customer

relation again:

 σ p (Customer X (π street, ccity ((σ cname = ' Smith' (Customer))))

 where P is a selection predicate requiring street and ccity values to be equal.

 Problem: how do we distinguish between the two street values appearing in the

Cartesian product, as both come from the Customer relation?

Solution: use the rename operator, denoted by the Greek letter rho (p).

We write

Px(R)

 to get the relation R under the name of X.

 If we use this to rename one of the two Customer relations we are using , the ambiguities

will disappear.

 π Customer.cname(σ Cust2.street= Customer.street ۸ Cust2.ccity = Customer.ccity)

 (Customer x (π street.ccity(σ cname=’Smith’ (PCust2 (Customer))))

 Union

The union operation is denoted u as in set theory. It returns the union (set union) of two

compatible relations. For a union operation RՍS to be legal , we require that:

• R and S must have the same number of attributes.

• The domains of the corresponding attributes must be the same.

To find all customers of the SFU branch, we must find everyone who has a loan or an

account or both at the branch. We need both Borrow and Deposit relations for this:

π cname (σ bname = ' SFU' (Borrow)) υ π cname (σ bname = ' SFU' (Deposit))

As in all set operations, duplicates are eliminated, giving the relation of Figure 2.5(a).

Chapter 02 – Relational Model 41

 Set Difference

The set difference operation is denoted by the minus sign (-). It finds tuples that are in one

relation, but not in another. Thus R-S results in a relation containing tuples that are in R but

not in S.

To find customers of the SFU branch who have an account there but no loan, we write

 πcname (σ bname = ' SFU' (Borrow)) - π cname (σ bname = 'SFU' (Deposit))

The result is shown in Figure 2.5(b). We can do more with this operation. Suppose we

want to find the largest account balance in the bank.

Strategy:

• Find a relation R containing the balances not the largest.

• Compute the set difference of R and the Deposit relation.

To find, we write

π Deposit.balance(σ Deposit.balance < D.balance (Deposit X pD (Deposit))

 This resulting relation contains all balances except the largest one. (See Figure 2.6(a)).

Now we can finish our query by taking the set difference:

πDeposit.balance(σ Deposit.balance < D.balance (Deposit X pD (Deposit))

Figure 2.5 the union and set difference operations

42 Chapter 02 – Relational Model

Figure 2.6(b) shows the result.

2.5.2. Additional Operations

Additional operations are defined in terms of the fundamental operations. They do not add

power to the algebra, but are useful to simplify common queries.

Intersection

The set intersection operation is denoted by n and returns a relation that contains tuples that

are in both of its argument relations. It does not add any power as

 R Ո S = R - (R - S)

To find all customers having both a loan and an account at the SFU branch, we write

π cname (σ bname = ' S FU' (Borrow)) Ո π cname (σ bname = ' S FU' (Deposit))

 Natural Join

Often we want to simplify queries on a Cartesian product. For example, to find all

customers having a loan at the bank and the cities in which they live, we need Borrow and

Customer relations:

π Borrow cname,ccity (σ Borrow.cname = Customer.cname (Borrow X Customer))

 Our selection predicate obtains only those tuples pertaining to only one cname. This

type of operation is very common, so we have the natural join operation, denoted by a ∞

sign. Natural join combines a Cartesian product and a selection into one operation. It

performs selection-forcing equality on those attributes that appear in both relation schemes.

Duplicates are removed as in all relation operations.

To illustrate, we can rewrite the previous query as

 II cname, ccity (Borrow ∞ Customer)

 The resulting relation is shown in Figure 2.7.

Figure 2.6 find the largest account balance in the bank

Chapter 02 – Relational Model 43

We can now make a more formal definition of natural join.

• Consider r and s to be sets of attributes.

• We denote attributes appearing in both relations by r Ո s.

• We denote attributes in either or both relations by r Ս s.

Consider two relations R(r) and S(s).

• The natural join of Rand S, denoted by R∞S is a relation on the scheme

 rՍs.

• It is a projection onto R Ս S of a selection on R x S where the predicate requires

R.Ai=S.Ai for each attribute Ai in rՈs.

Formally,

 R ∞ S = π rՍs (σ R.A1 = S.A1 ۸….۸ R.An= S.An (R x S))

 Where rՈs = {A1,……………….An}.

To find the assets and names of all branches which have depositors living in Stamford, we

need Customer, Deposit and Branch relations:

 π bname, assets (σ ccity=’Standford’ (Customer ∞ Deposit ∞ Branch))

Note that ∞ is associative. To find all customers who have both an account and a loan at

the SFU branch:

 π cname (σ bname='SFU' (Borrow ∞ Deposit))

This is equivalent to the set intersection version we wrote earlier. We see now that there

can be several ways to write a query in relational algebra. If two relations R(r) and S(s)

have no attributes in common, then rՈs =, and R∞ S = R X S.

Division

The division operation, denoted ÷, is suited to queries that include the phrase "for all".

Suppose we want to find all the customers who have an account at all branches located in

Brooklyn.

Strategy: think of it as three steps.

1. We can obtain the names of all branches located in Brooklyn by

R1 = π bname (σ bcity ='Brooklyn' (Branch))

Figure 2.7 Joining Borrow and Customer relations

44 Chapter 02 – Relational Model

2. We can also find all cname, bname pairs for which the customer has an account by

R2 = π cname, bname (Deposit)

3. Now we need to find all customers who appear in R2 with every branch name in R1

The divide operation provides exactly those customers:

 π cname, bname (Deposit) ÷ π bname(σ bcity =' Brooklyn ' (Branch))

which is simply R2 ÷ R1

Formally,

• Let R(r) and S(s) be relations.

• Let s U r.

• The relation R + S is a relation on scheme r - s.

• A tuple t is in R ÷ S if for every tuple tS in S there is a tuple tR in R satisfying both of

the following

tR[s] = tS[s]

tR[r - s] = t[r - s]

• These conditions say that the r - s portion of a tuple t is in R ÷ S if and

only if there are tuples with the r - s portion and the s portion in R for every value of

the s portion in relation S.

We will look at this explanation in class more closely. The division operation can be defined

in terms of the fundamental operations.

R ÷ S = π r-s (R) – π r-s ((π r-s ((R) x S) -R)

Assignment

Sometimes it is useful to be able to write a relational algebra expression in parts using a

temporary relation variable (as we did with R1 and R2 in the division example). The

assignment operation, denoted +-, works like an assignment in a programming language.

We could rewrite our division definition as

 T1 π r-s (R)

 T1 π r-s ((T1 x S)-R)

 No extra relation is added to the database, but the relation variable created can be used

in subsequent expressions. Assignment to a permanent relation would constitute a

modification to the database.

Chapter 02 – Relational Model 45

2.5.2. Modifying the Database

Up until now, we have looked at extracting information from the database. We also need

to add, remove and change information. Modifications are expressed using the assignment

operator.

Deletion

Deletion is expressed in much the same way as a query. Instead of displaying, the selected

tuples are removed from the database. We can only delete whole tuples.

In relational algebra, a deletion is of the form

 r r-E

 where r is a relation and E is a relational algebra query. Tuples in r for which E is true

are deleted.

 Some examples:

1. Delete all of Smith's account records.

Deposit Deposit – σ cname=’Smith’ (Deposit)

2. Delete all loans with loan numbers between 1300 and 1500.

 Deposit Deposit – σ loan# >= 1300" loan# =< 1500 (Deposit)

3. Delete all accounts at branches located in Needham.

r1 σ bcity= ‘Needham’ (Deposit ∞ Branch)

r2 ∏bname, account#,cname, balance(r1)

Deposit Deposit – r2

Insertion

To insert data into a relation, we either specify a tuple or write a query whose result is the

set of tuples to be inserted. Attribute values for inserted tuples must be members of the

attribute's domain.

An insertion is expressed by r r E

where r is a relation and E is a relational algebra expression.

Some examples:

1. To insert a tuple for Smith who has $1200 in account 9372 at the SFU

branch.

Deposit Deposit {('SFU' , 9372, 'Smith', 1200)}

2. To provide all loan customers in the SFU branch with a $200 savings

46 Chapter 02 – Relational Model

Account.

r1 σ bname=’SFU’ (Borrow)

r2 π bname,loan#,cname(r1)

Deposit Deposit  (r2 x {(200)})

 Update

 Updating allows us to change some values m a tuple without necessarily changing all.

We use the update operator, γ, with the form

 γ A E (R)

where r is a relation with attribute A, which is assigned the value of expression E. The

expression E is any arithmetic expression involving constants and attributes in a relation.

Some examples:

1. To increase all balances by 5 percent:

γ balance balance *1.05 (R)

This statement is applied to every tuple in Deposit.

2. To make two different rates of interest payment, depending on the balance account.

 γ balance balance*1.06 (Ϭ balance > 10000 (Deposit))

 γ balance balance*1.05 (Ϭ balance≤ 10000 (Deposit))

Note: in this example the order of the two operations is important.

2.6. The Tuple Relational Calculus

The relational calculus is nonoperational. The users define queries in terms of what they

want but not in terms of what the computer cannot compute.

The tuple relational calculus is a nonprocedural language. (The relational algebra was

procedural.) We must provide a formal description of the information desired.

A query in the tuple relational calculus is expressed as

{t l P(t)}

i.e . the set of tuples t for which predicate P is true.

We also use the notation

• t[a] to indicate the value of tuple ton attribute a.

• t ∈ r to show that tuple t is in relation r.

•

Several tuple variables may appear in a formula. A tuple variable is said to be a free

variable unless it is quantified by a ∃ or a ∀. Then it is said to be a bound

A formula is built of atoms. An atom is one of the following forms:

• s ∈ r, where s is a tuple variable, and r is a relation (is not allowed).

Chapter 02 – Relational Model 47

• s[x]θ u[y], where and u are tuple variables, and s and y are attributes, and θ is a

comparison operator (<, ≤, =, ≠, >, ≥).

• s[x] θ c, where c is a constant in the domain of attribute x.

Formulae are built up from atoms using the following rules:

• An atom is a formula.

• If P is a formula, then so are ¬P and (P).

• If P1 and P2 are formulae, then so are P1 v P2, P1 ۸ P2 and P1 ⇒P2

• If P(s) is a formula containing a free tuple variable s, then the followings are formulae

also.

∃s ∈ r(P(s)) and ∀s ∈ r(P(s))

Note some equivalences:

• P1 ۸ P2 =¬ (¬P1 v ¬P2)

• ∀t ∈ r(P(t)) = ¬∃t ∈ r(¬P(t))

• P1 ⇒ P2 =¬P1 v P2

For example, to find the branch name, loan number, customer name and amount for loans

over $1200:

{t I t ∈ Borrow ۸ t[amount] > 1200}

 This gives us all attributes, but suppose we only want the customer names. (We would

use project in the algebra.) We need to write an expression for a relation on scheme (cname).

{t I ∃s ∈ Borrow (t[cname]=s[cname] ۸ s[amount] > 1200)

 In English, we may read this equation as "the set of all tuples t such that there exists a

tuple s in the relation Borrow for which the values of t and s for the cname attribute are

equal, and the value of s for the amount attribute is greater than 1200." The notation ∃t ∈

r(Q[t]) means "there exists a tuple t in relation r such that predicate Q[t] is true".

How did we get the above expression? We needed tuples on scheme cname such that

there were tuples in Borrow pertaining to that customer name with amount attribute. The

tuples t get the scheme cname implicitly as that is the only attribute t is mentioned with.

Let's look at a more complex example. "Find all customers having a loan from the

'SFU' branch, and the the cities in which they live."

t I ∃s ∈ Borrow (t[cname]=s[cname] ۸ s[bname] = 'SFU'

۸ ∃u ∈ Customer(u[cname]=s[cname] ۸ t[ccity] = u[ccity]))}

 In English, we might read this as "the set of all (cname, ccity) tuples for which cname

is a borrower at the 'SFU' branch, and ccity is the city of cname". Tuple variable s ensure

that the customer is a borrower at the 'SFU'. branch. Tuple variable u is restricted to pertain

to the same customer as s, and also ensures that ccity is the city of the customer.

48 Chapter 02 – Relational Model

 The logical connectives ۸ (AND) and v(OR) are allowed, as well as ¬ (negation). We

also use the existential quantifier ∃ and the universal quantifier ∀.

Some more examples:

1. Find all customers having a loan, an account, or both at the SFU branch:

{t | ∃s ∈ Borrow (t[cname]=s[cname] ۸ s[bname] = 'SFU')

v ¬∃u ∈ Deposit(t[cname]=u[cname] ۸ u[bname] ='SFU')}

 Note the use of the v connective. As usual, set operations to remove all duplicates.

2. Find all customers who have both a loan and an account at the SFU branch. Solution:

simply change the v connective in 1 to a ۸.

3. Find customers who have an account, but not a loan at the SFU branch.

{t | ∃u ∈ Deposit(t[cname]=u[cname] ۸ u[bname] ='SFU')

v ¬∃s ∈ Borrow(t[cname]=s[cname] ۸ s[bname] ='SFU')}

4. Find all customers who have an account at all branches located in Brooklyn.

 (We used division in relational algebra.) For this example, we will use implication,

denoted by a pointing finger in the text, but by ⇒ here. The formula P ⇒ Q means P implies

Q, or, if P is true, then Q must be true.

{t I ∀u ∈ Branch(u[bcity] = 'Brooklyn' ⇒

¬∃s ∈ Borrow(t[cname]=s[cname] ۸ u[bname] =s[bname]))}

 In English: "the set of all cname tuples t such that for all tuples u in the Branch relation,

if the value of u on attribute bcity is Brooklyn, then the customer has an account at the

branch whose name appears in the bname attribute of u." Division is difficult to understand.

Think it through carefully.

A tuple relational calculus expression may generate an infinite expression, e.g.

{t | ¬ (t ∈ Borrow)}

There are an infinite number of tuples that are not in Borrow! Most of these tuples

contain values that do not appear in the database. Therefore, we need to restrict the

relational calculus a bit.

• The domain of a formula P, denoted dom(P), is the set of all values referenced in P.

• These include values mentioned in P as well as values that appear in a tuple of a relation

mentioned in P.

• So, the domain of P is the set of all values explicitly appearing in P or that appear in

relations mentioned in P.

• dom(t∈Borrow ۸ t[amount]>1200) is the set of all values appearing in Borrow and 1200.

• dom(t | ¬ (t∈Borrow) is the set of all values appearing in Borrow.

Chapter 02 – Relational Model 49

We may say an expression {t I P(t)} is safe if all values that appear in the result are

values from dom(P). A safe expression yields a finite number of tuples as its result.

Otherwise, it is called unsafe. The tuple relational calculus restricted to safe expressions is

equivalent in expressive power to the relational algebra.

 In the relational model, the data are stored in the form of tables or relations.

Each table or relation has a unique name. Tables consist of a given number of

columns or attributes. Every column of a table must have a name and no two

columns of the same table may have identical names.

 The rows of the table are called tuples. The total number of columns or

attributes is known as the degree of the table. The relational model provides an

alternative way to express queries. The principle of the relational model is set by

E.F. Codd (Edgar Frank Codd) to use. This chapter also introduced concepts of

relational algebra and relational calculus. different operators like selection,

projection, rename, Cartesian product, union, intersection, natural join, division,

and also assignment were discussed with suitable examples

Summary

50 Chapter 02 – Relational Model

1. What is the relational model?

2. What are the super key, candidate key, and primary key?

3. What are the differences between relational algebra and relational calculus?

4. What is the tuple?

5. What does it mean of word of relation in the relational model?

6. Please list down the kind of fundamental operation at least 6 operation.

Questions

According to figure 3.3 mentioned above, please write the formula of relational

algebra to solve the problem below:

1. Show all tuples that have value “101” in column “loan#”

2. List all entries for ABA_TK (requires amount>2000)

3. Delete all of customer name “Gech” from branch name “ABA_TK”.

4. Delete all account at branches located in SFU.

Exercises

Objective

 To Understand history of Relational Language-SQL

 To explain DDL: Data Definition Language

 To understand Views

 To explain DML: Data Modification

 To understand Embedded SQL

Chapter 03

Relational Language-SQL

In this chapter, you will learn:

3.1 History of SQL

3.2 DDL: Data Definition Language

 3.2.1 Schema Definition in SQL

 3.2.2 Integrity Constraints

 3.2.3 Domain Types

3.3 Views

 3.3.1 View Definition

 3.3.2 Update Through Views and Null Values

 3.3.3 Index Definition in SQL

3.4 DML: Data Modification

 3.4.1 Insert

 3.4.2 Update

 3.4.3 Delete

 3.4.4 Select (Data Retrieval)

 3.4.5 Netsted Subqueies

 3.4.6 Jointed Relation

3.5 Embedded SQL

Chapter 03 – Relational Language-SQL 53

3.1 History of SQL

SQL is the most popular computer language used to create, modify, retrieve and

manipulate data from relational database management systems. According to history,

during 1970s a group at IBM’s San Jose research center developed a database and then

Oracle to date. SQL is standardized by ANSI and ISO. The programming language is

integrated with SQL or use SQL commands to use in database.As time goes on, SQL is

more developed and more useful.

Commercial database systems require more user-friendly query languages. We will look

at SQL in detail. Although referred to as query languages, SQL contains facilities for

designing and modifying the database.

SQL (commonly expanded to Structured Query Language) is the most popular computer

language used to create, modify, retrieve and manipulate data from relational database

management systems (RDBMS). The language has evolved beyond its original purpose to

support object-relational database management systems. It is an ANSI/ISO standard.

During the 1970s, a group at IBM's San Jose research center developed a database system

"System R" based upon, but not strictly faithful to, Codd's model. Structured English Query

Language ("SEQUEL") was designed to manipulate and retrieve data stored in System R.

The acronym SEQUEL was later condensed to SQL because the word 'SEQUEL' was held

as a trademark by the Hawker-Siddeley aircraft company of the UK. Although SQL was

influenced by Codd's work, Donald D. Chamberlin and Raymond F. Boyce at IBM were

the authors of the SEQUEL language design. Their concepts were published to increase

interest in SQL.

The first non-commercial, relational, non-SQL database, Ingres, was developed in 1974 at

U.C. Berkeley. In 1978, methodical testing commenced at customer test sites.

Demonstrating both the usefulness and practicality of the system, this testing proved to be

a success for IBM. As a result, IBM began to develop commercial products that

implemented SQL based on their System R prototype, including the System/38 (announced

in 1978 and commercially available in August 1979), SQL/DS (introduced in 1981), and

DB2 (in 1983).

At the same time Relational Software, Inc. (now Oracle Corporation) saw the potential of

the concepts described by Chamberlin and Boyce and developed their own version of a

RDBMS for the Navy, CIA and others. In the summer of 1979 Relational Software, Inc.

introduced Oracle V2 (Version2) for VAX computers as the first commercially available

54 Chapter 03 – Relational Language-SQL

implementation of SQL. Oracle is often incorrectly cited as beating IBM to market by two

years, when in fact they only beat IBM's release of the System/38 by a few weeks.

Considerable public interest then developed; soon many other vendors developed versions,

and Oracle's future was ensured.

It is often suggested that IBM was slow to develop SQL and relational products, possibly

because it wasn't available initially on the mainframe and Unix environments, and that they

were afraid it would cut into lucrative sales of their IMS database product, which used

navigational database models instead of relational.

But at the same time as Oracle was being developed, IBM was developing the System/38,

which was intended to be the first relational database system, and was thought by some at

the time, because of its advanced design and capabilities, that it might have become a

possible replacement for the mainframe and Unix systems.

SQL was adopted as a standard by ANSI (American National Standards Institute) in 1986

and ISO (International Organization for Standardization) in 1987. ANSI has declared that

the official pronunciation for SQL is 'Es-Kju-El', although many English-speaking

database professionals still pronounce it as 'sequel'.

The SQL standard has gone through a number of revisions:

• 1986 SQL-86 (SQL-87): First published by ANSI. Ratified by ISO in 1987.

• 1989 SQL-89: Minor revision.

• 1992 SQL-92 (SQL2): Major revision.

• 1999 SQL: 1999 (SQL3) Added regular expression matching, recursive queries,

triggers, non-scalar types and some object-oriented features. (The last two are somewhat

controversial and not yet widely supported.)

• 2003 SQL: 2003: Introduced XML-related features, window functions, standardized

sequences and columns with auto-generated values (including identity-columns).

Although SQL is defined by both ANSI and ISO, there are many extensions to and

variations on the version of the language defined by these standards bodies. Many of these

extensions are of a proprietary nature, such as Oracle Corporation's PL/SQL or Sybase,

IBM's SQL PL (SQL Procedural Language) and Microsoft's Transact-SQL.

It is also not uncommon for commercial implementations to omit support for basic features

of the standard, such as the DATE or TIME data types, preferring some variant of their

own. As a result, in contrast to ANSI C or ANSI Fortran, which can usually be ported from

platform to platform without major structural changes, SQL code can rarely be ported

Chapter 03 – Relational Language-SQL 55

between database systems without major modifications. There are several reasons for this

lack of portability between database systems:

• the complexity and size of the SQL standard means that most databases do not implement

the entire standard.

• the standard does not specify database behavior in several important areas (e.g. indexes) ,

leaving it up to implementations of the standard to decide how to behave.

• the SQL standard precisely specifies the syntax that a conformant database system must

implement. However, the standard's specification of the semantics of language constructs

is less well-de fined, leading to areas of ambiguity.

• many database vendors have large existing customer bases; where the SQL standard

conflicts with the prior behavior of the vendor's database, the vendor may be unwilling to

break backward compatibility.

• some believe the lack of compatibility between database systems is intentional in order

to ensure vendor lock-in.

SQL is designed for a specific, limited purpose - querying data contained in a relational

database. As such, it is a set-based, declarative computer language rather than an

imperative language such as C or BASIC which, being programming languages, are

designed to solve a much broader set of problems. Language extensions such as PL/SQL

are designed to address this by turning SQL into a full­ fledged programming language

while maintaining the advantages of SQL.

Another approach is to allow programming language code to be embedded in and interact

with the database. For example, Oracle and others include Java in the database, while

PostgreSQL allows functions to be written in a wide variety of languages, including Perl,

Tel, and C.

One joke about SQL is that "SQL is neither structured, nor is it limited to queries,

nor is it a language." This is founded on the notion that pure SQL is not a classic

programming language since it is not Turing-complete. On the other hand, however, it is a

programming language because it has a grammar, syntax, and programmatic purpose and

intent. The joke recalls Voltaire's remark that the Holy Roman Empire was "neither holy,

nor Roman, nor an empire."

SQL contrasts with the more powerful database-oriented fourth-generation programming

languages such as Focus or SAS in its relative functional simplicity and simpler command

set. This greatly reduces the degree of difficulty involved in maintaining SQL source code,

56 Chapter 03 – Relational Language-SQL

but it also makes programming such questions as 'Who had the top ten scores?' more

difficult, leading to the development of procedural extensions, discussed above.

However, it also makes it possible for SQL source code to be produced (and optimized) by

software , leading to the development of a number of natural language database query

languages, as well as 'drag and drop' database programming packages with 'object oriented'

interfaces. Often these allow the resultant SQL source code to be examined, for educational

purposes, further enhancement, or to be used in a different environment.

Technically, SQL is a declarative computer language for use with "SQL databases".

Theorists and some practitioners note that many of the original SQL features were inspired

by, but in violation of, the relational model for database management and its tuple calculus

realization. Recent extensions to SQL achieved relational completeness, but have

worsened the violations.

In addition, there are also some criticisms about the practical use of SQL:

• The language syntax is rather complex (sometimes called "COBOL-like").

• It does not provide a standard way, or at least a commonly-supported way, to split large

commands into multiple smaller ones that reference each other by name. This tends to

result in "run-on SQL sentences" and may force one into a deep hierarchical nesting when

a graph-like (reference-by-name) approach may be more appropriate and better repetition-

factoring.

• Implementations are inconsistent and, usually, incompatible between vendors.

• For larger statements, it is often difficult to factor repeated patterns and expressions

into one or fewer places to avoid repetition and avoid having to make the same change to

different places in a given statement.

• Confusion about the difference between value-to-column assignment in UPDATE and

INSERT syntax.

Anyway, SQL has become the standard relational database language. It has several parts:

1. Data definition language (DDL) - provides commands to

• Define relation schemes.

• Delete relations.

• Create indices.

• Modify schemes.

2. Interactive data manipulation language (DML) - a query language based on both

relational algebra and tuple relational calculus, plus commands to insert, delete and

modify tuples.

Chapter 03 – Relational Language-SQL 57

3. View Definition - commands for defining views

4. Authorization - specifying access rights to relations and views.

5. Integrity - a limited form of integrity checking.

6. Transaction control - specifying beginning and end of transactions.

7. Embedded data manipulation language - for use within programming languages like C,

PL/1, Cobol, Pascal, etc

We will only look at basic DDL, views and the DML. The relation schemes for the banking

example used throughout the textbook are:

•Branch-scheme= (bname, bcity, assets)

Figure 4.1 the Branch relation

branch-name branch-city assets

Brighton Brooklyn 7100000

Downtown Brooklyn 9000000

Mianus Horseneck 400000

North Town Rye 3700000

Perryridge Horseneck 1700000

Pownal Bennington 300000

Redwood Palo Alto 2100000

Round Hill Horseneck 8000000

• Customer-scheme = (cname, street, ccity)

Figure 4.2 the Customer relation

 customer-name customer-street customer-city
Jones Main Harrison
Smith North Rye
Hayes Main Harrison
Curry North Rye
Lindsay Park Pittsfield
Turner Putnam Stamford
Williams

Nassau
.

Princeton

Adams Spring Pittsfield
Johnson Alma Palo Alto
Glenn Sand Hill Woodside
Brooks Senator Brooklyn

Green Walnut Stamford

58 Chapter 03 – Relational Language-SQL

• Depositor-scheme = (cname, account)

Figure 4.3 the Depositor relation

customer-name account-number

Hayes A-102

Johnson A-101

Johnson A-201

Jones A-217

Lindsay A-222

Smith A-215

Turner A-305

• Account-scheme = (account, bname, balance)

Figure 4.4 the Account relation

account-number branch-name balance

 A-101 Downtown 500

A-102 Perryridge 400

A-201 Brighton 900

A-215 Mianus 700

A-217 Brighton 750

A-222 Redwood 700

A-305 Round Hill 350

• Loan-scheme = (loan, bname, amount)

Figure 4.5 the Loan relation

Loan branch-name Amount

L-11 Round Hill 900

L-14 Downtown 1500

L-15 Perryridge 1500

L-16 Perryridge 1300

L-17 Downtown 1000

L-23 Redwood 2000

L-93 Mianus 500

Chapter 03 – Relational Language-SQL 59

• Borrower-scheme = (cname, loan)

Figure 4.6 the Borrower relation

 customer-name loan-number

Adams L-16

Curry L-93

Hayes L-15

Jackson L-14

Jones L-17

Smith L-11

Smith L-23

Willia.ms L-17

3.2 DDL: Data Definition Language

DDL or Data Definition Language actually consists of the SQL commands that can be used

to define the database schema. In a SQL database, a schema is a list of logical structures

of data. Attribute is or the conjunction of a column. Integrity Constraints are the protocols

that a table's data columns must follow. Domain integrity constraint contains a certain set

of rules or conditions to restrict the kind of attributes or values a column can hold in the

database table. Referential Integrity is a constraint in the database that enforces the

relationship between two tables Domain is value of attribute. Domain have type char(n)

(or character(n)): fixed-length character string, with user-specified length. varchar(n) (or

character varying): variable-length character string, with user-specified maximum length.

int or integer: an integer (length is machine-dependent). MySQL primary key is a single

or combination of the field, which is used to identify each record in a table uniquely.

The SQL DDL (Data Definition Language) allows specification of not only a set of

relations, but also the following information for each relation:

• The schema for each relation.

• The domain of values associated with each attribute.

• Integrity constraints.

• The set of indices for each relation.

• Security and authorization information.

• Physical storage structure on disk.

60 Chapter 03 – Relational Language-SQL

3.2.1 Schema Definition in SQL

An SQL relation is defined by:

CREATE TABLE R (A1 D1, A2 D2, ... , An Dn,

INTETRITY-CONSTRAINT1, ...

INTETRITY-CONSTRAINTN)

where R is the relation name, Ai is the name of an attribute, and Di is the domain of

that attribute.

The allowed integrity-constraints include

PRIMARY KEY (A1, A2, ... , AN)

CHECK(P)

e.g.,

CREATE TABLE BRANCH (BNAME CHAR(l 5) NOT NULL

BCITY CHAR(30)

ASSETS INTEGER

PRIMARY KEY (BNAME)

 CHECK (ASSETS>= 0))

The values of primary key must be ‘not null’ and ‘unique’. SQL-92

considers not null in PRIMARY KEY specification is redundant but SQL-89

requires to define it explicitly.

Check creates type checking functionality which could be quite useful.

e.g., CREATE TABLE STUDENT (NAME CHAR(15) NOT NULL

STUDENT-ID CHAR(10) NOT NULL

DEGREE-LEVEL CHAR(l 5) NOT NULL

CHECK (DEGREE-LEVEL IN ('BACHELORS', 'MASTERS',

'DOCTORATE')))

Some checking (such as foreign-key constraints) could be costly,

e.g., CHECK (BNAME IN (SELECT BNAME FROM BRANCH))

3.2.2 Integrity Constraints

Integrity constraints provide a way of ensuring that changes made to the database by

authorized users do not result in a loss of data consistency. An integrity constraint can be

any arbitrary predicate applied to the database. They may be costly to evaluate, so we will

only consider integrity constraints that can be tested with minimal overhead.

Chapter 03 – Relational Language-SQL 61

An addition to the original standard allows specification of primary and candidate keys

and foreign keys as part of the CREATE TABLE command:

• PRIMARY KEY clause includes a list of attributes forming the primary key.

• UNIQUE KEY clause includes a list of attributes forming a candidate key.

• FOREIGN KEY clause includes a list of attributes forming the foreign key, and the name

of the relation referenced by the foreign key.

Domain Integrity Constraints

A domain of possible values should be associated with every attribute. These domain

constraints are the most basic form of integrity constraint. They are easy to test for when

data is entered.

Domain types

• Attributes may have the same domain, e.g. cname and employee-name.

• It is not as clear whether bname and cname domains ought to be distinct.

• At the implementation level, they are both character strings.

• At the conceptual level, we do not expect customers to have the same names as branches,

in general.

• Strong typing of domains allows us to test for values inserted, and whether queries make

sense.

• Newer systems, particularly object-oriented database systems, offer a rich set of domain

types that can be extended easily.

The CHECK clause in SQL-92 permits domains to be restricted in powerful ways that

most programming language type systems do not permit. The CHECK clause permits

schema designer to specify a predicate that must be satisfied by any value assigned to a

variable whose type is the domain.

e.g.,

CREATE DOMAIN HOURLY-WAGE NUMERIC(5, 2)

CONSTRAINT WAGE-VALUE-TEST CHECK (VALUE >= 4.00)

Note that 'CONSTRAINT WAGE-VALUE-TEST’ is optional (to give a name to the

test to signal which constraint is violated).

62 Chapter 03 – Relational Language-SQL

CREATE DOMAIN ACCOUNT-NUMBER CHAR(10)

CONSTRAINT ACCOUNT-NUMBER-NULL-TEST

CHECK(VALUE NOT NULL)

CREATE DOMAIN ACCOUNT-TYPE CHAR(10)

CONSTRAINT ACCOUNT-TYPE-TEST

CHECK(VALUE IN ('Checking', 'Saving'))

Referential Integrity Constraint

Often we wish to ensure that a value appearing in a relation for a given set of attributes

also appears for another set of attributes in another relation. This is called referential

integrity.

e.g.,

CREATE TABLE CUSTOMER (CNAME CHAR(20) NOT NULL,

STREET CHAR(30),

CITY CHAR(30),

PRIMARY KEY (CNAME))

CREATE TABLE BRANCH (BNAME CHAR(15) NOT NULL,

BCITY CHAR(30),

ASSETS INTEGER,

PRIMARY KEY (BNAME),

 CHECK (ASSETS > = 0))

CREATE TABLE ACCOUNT (ACCOUNT# CHAR(10) NOT NULL ,

BNAME CHAR(l5),

BALANCE INTEGER,

PRIMARY KEY (ACCOUNT#),

FOREIGN KEY (BNAME) REFERENCES BRANCH,

 CHECK (BALANCE>= 0))

Chapter 03 – Relational Language-SQL 63

CREATE TABLE DEPOSITOR (CNAME CHAR(20) NOT NULL,

ACCOUNT# CHAR(10) NOT NULL,

PRIMARY KEY (CNAME, ACCOUNT#),

FOREIGN KEY (CNAME) REFERENCES CUSTOMER,

FOREIGN KEY (ACCOUNT#) REFERENCES ACCOUNT)

Notes on foreign keys: A short form to declare a single column is a foreign key.

BNAME CHAR(15) REFERENCES BRANCH

When a referential integrity constraint is violated, the normal procedure is to reject the

action. But a FOREIGN KEY clause in SQL-92 can specify steps to be taken to change

the tuples in the referenced relation to restore the constraint.

e.g.,

CREATE TABLE ACCOUNT

FOREIGN KEY (BNAME) REFERENCES BRANCH ,

ON DELETE CASCADE

ON INSERT CASCADE ,

If a delete of a tuple in Branch results in the preceding referential integrity constraints

being violated, the delete is not rejected, but the delete 'cascade ' to the Account relation,

deleting the tuple that refers to the Branch that was deleted. Update will be cascaded to the

new value of the Branch!

SQL-92 also allows the FOREIGN KEY clause to specify actions other than cascade,

such as setting the referencing field to NULL, or to a default value, if the constraint is

violated.

If there is a chain of foreign key dependencies across multiple relations, a deletion or

update at one end of the chain can propagate across the entire chain. If a cascading update

or delete causes a constraint violation that cannot be handled by a further cascading

operation, the system aborts the transaction and all the changes caused by the transaction

and its cascading actions are undone.

Given and complexity and arbitrary nature of the way constraints in SQL behave with

NULL values, it is the best to ensure that all columns of UNIQUE and FOREIGN KEY

specifications are declared to be NONNULL.

64 Chapter 03 – Relational Language-SQL

3.2.3 Domain Types

The SQL-92 standard supports a variety of built-in domain types:

• CHAR (N) (or CHARACTER (N)): fixed-length character string, with user- specified

length.

• VARCHAR (N) (or CHARACTER VARYING): variable-length character string,

• INT or INTEGER: an integer (length is machine-dependent).

• SMALLINT: a small integer (length is machine-dependent).

• NUMERIC (P, D): a fixed-point number with user-specified precision, consists of P digits

(plus a sign) and D of P digits are to the right of the decimal point.

 e.g., NUMERIC (3, 1) allows 44.5 to be stored exactly but not 444.5.

• REAL or DOUBLE PRECISION: floating-point or double-precision floating-point

numbers, with machine-dependent precision.

• FLOAT (N): floating-point, with user-specified precision of at least N digits .

• DATE: a calendar date, containing four digit year, month, and day of the month.

• TIME: the time of the day in hours, minutes, and seconds.

SQL-92 allows arithmetic and comparison operations on various numeric domains,

including, INTERVAL and cast (type coercion) such as transforming between

SMALLINT and INT. It considers strings with different length are compatible types as

well.

SQL-92 allows create domain statement,

e.g.,

CREATE DOMAIN PERSON-NAME CHAR(20)

3.3 Views

views is a virtual table based on the result-set of an SQL statement. index is an on-disk

structure associated with a table or view that speeds retrieval of rows from the table or

view.

3.3.1 View Definition

We have assumed up to now that the relations we are given are the actual relations stored

in the database. For security and convenience reasons, we may wish to create a

personalized collection of relations for a user.

Chapter 03 – Relational Language-SQL 65

We use the term view to refer to any relation, not part of the conceptual model that is

made visible to the user as a "virtual relation". As relations may be modified by deletions,

insertions and updates, it is generally not possible to store views. Views must then be

recomputed for each query referring to them.

A view is defined using the CREATE VIEW command:

CREATE VIEW V AS <query expression>

where <query expression > is any legal query expression.

The view created is given the name V.

To create a view which contains all customers of all branches and their customers:

CREATE VIEW ALL-CUSTOMER AS

(SELECT BNAME, CNAME FROM DEPOSITOR, ACCOUNT

WHERE DEPOSTOR.ACCOUNT# = ACCOUNT.ACCOUNT#)

UNION

(SELECT BNAME, CNAME FROM BORROWER, LOAN

WHERE BORROWER.LOAN#= LOAN.LOAN#)

Having defined a view, we can now use it to refer to the virtual relation it creates. View

names can appear anywhere a relation name can.

e.g., We can now find all customers of the SFU branch by writing

 SELECT CNAME FROM ALL-CUSTOMER WHERE BNAME=' SFU'

3.3.2 Updates Through Views and Null Values

Updates, insertions and deletions using views can cause problems. The modifications on a

view must be transformed to modifications of the actual relations in the conceptual model

of the database. The view update anomaly exists also in SQL. An example will illustrate:

consider a clerk who needs to see all information in the loan relation except amount.

Let the view Branch-loan be given to the clerk:

CREATE VIEW BRANCH-LOAN AS (SELECT BNAME, LOAN#

FROM LOAN)

66 Chapter 03 – Relational Language-SQL

Since SQL allows a view name to appear anywhere a relation name may appear, the clerk

can write:

INSERT INTO BRANCH-LOAN VALUES ('SFU', 'L-307')

This insertion is represented by an insertion into the actual relation LOAN, from which

the view is constructed. However, we have no value for amount. This insertion results in

‘SFU', 'L-307', NULL) being inserted into the LOAN relation. The symbol NULL says

the value is unknown or does not exist.

As we saw, when a view is defined in terms of several relations, serious problems can

result. As a result, many SQL-based systems impose the constraint that a modification is

permitted through a view only if the view in question is defined in terms of one relation in

the database.

3.3.3 Index Definition in SQL

Some SQL implementations include data definition commands to create and drop indices.

The SQL commands are

An index is created by

create index <index -name>

on r (<attribute-list>)

The attribute list is the list of attributes in relation r that form the search key for the

index.

.e.g., to create an index on bname for the branch relation:

 create index b-index

 on branch (bname)

If the search key is a candidate key, we add the word UNIQUE to the definition:

 create unique index b-index

 on branch (bname)

• If bname is not a candidate key, an error message will appear.

• If the index creation succeeds, any attempt to insert a tuple violating this requirement will

Chapter 03 – Relational Language-SQL 67

fail.

• The UNIQUE keyword is redundant if primary keys have been defined with

integrity constraints already.

To remove an index, the command is

drop index <index-name>

3.4 DML: Data Modification

Interactive data manipulation language (DML) a query language based on both relational

algebra and tuple relational calculus, plus commands to insert, delete and modify tuples.

Data Modification (The INSERT, UPDATE, DELETE, SELECT and MERGE) statement

are collectively referred to as DML (Data Manipulation Language) statements. Insert data

into a relation, we either specify a tuple, or write a query whose result is the set of tuples

to be inserted. Attribute values for inserted tuples must be members of the attribute's

domain .Updating allows us to change some values in a tuple without necessarily changing

all. Deletion is expressed in much the same way as a query. Instead of displaying, the

selected tuples are removed from the database. We can only delete whole tuples. Data

retrieval means obtaining data from a Database Management System (DBMS) such as

ODBMS. Basic structure of an SQL expression consist of SELECT, FROM, and Where

clause. The Rename Operation is mechanism to rename both relations and attributes.

Tuple variable can be used in SQL, and are defined in the FROM clause. String is pattern

matching using the operator LIKE. Patterns are case sensitive. Ordering the Display of

Tuples. In SQL allow the user to control the order in which tuples are displayed (ORDER,

DESC, ASC).Duplicate Tuples we use the DISTINCT Keyword. The SELECT DISTINCT

statement is used to return only distinct (different) values. SQL has the set operations

UNION, INTERSECT, EXCEPT. Aggregate function performs a calculation on a set of

values, and returns a single value. SQL can then compute (average, minimum, maximum,

total, number).Null value is a field with a NULL value is a field with no value. Netsted

Subqueies is a SELECT query embedded within the WHERE or HAVING clause of another

SQL query. We use the IN and NOT IN operations for set membership. To set compare set

in terms of inequalities. The EXISTS operator is used to test for the existence of any record

in a subquery. SQL-92 allows a subquery expression to be used in the from clause.Joined

68 Chapter 03 – Relational Language-SQL

Relations a logical connection that represents the relationship between two Cis. Join types:

INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN).

3.4.1 Insert

To insert data into a relation, we either specify a tuple, or write a query whose result is the

set of tuples to be inserted. Attribute values for inserted tuples must be members of the

attribute's domain.

e.g.,

To insert a tuple for Smith who has $1200 in account A-9372 at the SFU branch.

INSERT INTO ACCOUNT VALUES ('SFU', 'A-9372', 1200)

To provide each loan that the customer has in the ‘SFU’ branch with a $200 savings

account.

INSERT INTO ACCOUNT (SELECT BNAME, LOAN#, 200

FROM LOAN

WHERE BNAME='SFU')

Here, we use a SELECT to specify a set of tuples.

It is important that we evaluate the SELECT statement fully before carrying out any

insertion. If some insertions were carried out even as the SELECT statement were being

evaluated, the insertion

INSERT INTO ACCOUNT (SELECT *

FROM ACCOUNT)

might insert an infinite number of tuples. Evaluating the select statement completely

before performing insertions avoids such problems.

It is possible for inserted tuples to be given values on only some attributes of the schema.

The remaining attributes are assigned a NULL value denoted by NULL. We can prohibit

the insertion of NULL values using the SQL DDL.

Chapter 03 – Relational Language-SQL 69

3.4.2 Update

Updating allows us to change some values in a tuple without necessarily changing all.

e.g.,

To increase all balances by 5 percent.

UPDATE ACCOUNT SET BALANCE=BALANCE*1.05

This statement is applied to every tuple in account.

To make two different rates of interest payment, depending on balance amount:

 UPDATE ACCOUNT SET BALANCE=BALANCE * 1.06

WHERE BALANCE> 10000;

UPDATE ACCOUNT SET BALANCE=BALANCE * 1.05

WHERE BALANCE 10000

Note: in this example the order of the two operations is important.

In general, WHERE clause of UPDATE statement may contain any construct legal in

a WHERE clause of a SELECT statement (including nesting).

A nested SELECT within an UPDATE may reference the relation that is being updated.

As before, all tuples in the relation are first tested to see whether they should be updated,

and the updates are carried out afterwards.

For example, to pay 5% interest on account whose balance is greater than average, we

have

UPDATE ACCOUNT SET BALANCE=BALANCE * 1.05

WHERE BALANCE> SELECT AVG (BALANCE)

FROM ACCOUNT

3.4.3 Delete
Deletion is expressed in much the same way as a query. Instead of displaying, the selected

tuples are removed from the database. We can only delete whole tuples.

A deletion in SQL is of the form

70 Chapter 03 – Relational Language-SQL

DELETE FROM R WHERE P

Tuples in R for which P is true are deleted.

If the WHERE clause is omitted, all tuples are deleted. The request

 DELETE FROM LOAN

deletes all tuples from the relation Loan.

Some more examples:

Delete all of Smith's account records.

DELETE FROM DEPOSITOR

WHERE CNAME='Smith' .

Delete all loans with loan numbers between 1300 and 1500.

DELETE FROM LOAN

WHERE LOAN# BETWEEN 1300 AND 1500

Delete all accounts at branches located in Surrey.

DELETE FROM ACCOUNT

WHERE BNAME IN (SELECT BNAME

FROM BRANCH

WHERE BCITY=’Surrey’

We may only delete tuples from one relation at a time, but we may reference any

number of relations in a select-from-where clause embedded in the WHERE clause of a

DELETE.

However, if the DELETE request contains an embedded SELECT that references the

relation from which tuples are to be deleted, ambiguities may result.

For example, to delete the records of all accounts with balances below the average, we

might write

Chapter 03 – Relational Language-SQL 71

DELETE FROM ACCOUNT

WHERE BALANCE< (SELECT AVG(BALANCE) FROM ACCOUNT)

You can see that as we delete tuples from account, the average balance changes.

Solution: The DELETE statement first test each tuple in the relation Account to check

whether the account has a balance less than the average of the bank. Then all tuples that

fail the test are deleted. Perform all the tests (and mark the tuples to be deleted) before any

deletion then delete them en masse after the evaluations.

3.4.4 Select (Data Retrieval)

Basic structure of an SQL expression consists of SELECT, FROM and WHERE clauses:

• SELECT clause lists attributes to be copied - corresponds to relational algebra project

(∏).

• FROM clause corresponds to Cartesian product(X) lists relations to be used.

• WHERE clause corresponds to selection predicate (σ) in relational algebra.

Typical query has the form

SELECT A1, A2, ….., An

FROM R1, R2, ….., Rm

WHERE P

where each Ai represents an attribute, each Ri a relation, and P is a predicate.

This is equivalent to the relational algebra expression

∏ A1, A2, ….., An {σ P (R1 X R2 X Rm)}

• If the WHERE clause is omitted, the predicate P is true.

• The list of attributes can be replaced with a * to select all.

• SQL forms the Cartesian product of the relations named, performs a selection using

the predicate, then projects the result onto the attributes named.

• The result of an SQL query is a relation.

• SQL may internally convert into more efficient expressions.

 e.g., Find the names of all branches in the Account relation.

72 Chapter 03 – Relational Language-SQL

SELECT BNAME

, FROM ACCOUNT

distinct vs. all: elimination or not elimination of duplicates.

Find the names of all branches in the Account relation.

SELECT DISTINCT BNAME

FROM ACCOUNT

By default, duplicates are not removed. We can state it explicitly using all.

SELECT ALL BNAME

FROM ACCOUNT

SELECT * means select all the attributes. Arithmetic operations can also be in the

selection list.

The FROM clause by itself defines a Cartesian product of the relations in the clause.

SQL does not have a natural join equivalent. However, natural join can be expressed in

terms of a Cartesian product, selection, and projection.

For the relational algebra expression

∏ cname, loan# (Borrow ∞ Loan)

we can write in SQL,

SELECT DISTINCT CNAME, BORROWER.LOAN#

 FROM BORROWER, LOAN

 WHERE BORROWER.LOAN# = LOAN.LOAN#

More selections with join: "Find the names and loan numbers of all customers who have

a loan at the SFU branch," we can write in SQL,

SELECT DISTINCT CNAME, BORROWER.LOAN#

Chapter 03 – Relational Language-SQL 73

 FROM BORROWER, LOAN

WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME='SFU'

The predicates can be more complicated, and can involve

• Logical connectives such as ‘and, or, not’.

• Arithmetic expressions on constant or tuple values.

• The between operator for ranges of values.

e.g., Find account number of accounts with balances between $90,000 and $100,000.

SELECT ACCOUNT#

FROM ACCOUNT

WHERE BALANCE BETWEEN 90000 AND 100000

The Rename Operation

The rename operation is a mechanism to rename both relations and attributes.

AS clause can appear in both the SELECT and FROM clauses:

old-name AS new-name.

e.g.,

SELECT DISTINCT CNAME, BORROWER.LOAN# AS LOAN_ID

 FROM BORROWER, LOAN

WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME= 'SFU'

Tuple Variables

Tuple variables can be used in SQL, and are defined in the FROM clause:

SELECT DISTINCT CNAME, T.LOAN#

FROM BORROWER AS S, LOAN AS T

WHERE S.LOAN# = T.LOAN#

Note: The keyword AS is optional here.

These variables can then be used throughout the expression. Think of it as being

something like the rename operator.

Finds the names of all branches that have assets greater than at least one branch

located in Burnaby.

74 Chapter 03 – Relational Language-SQL

SELECT DISTINCT T.BNAME

FROM BRANCH S, BRANCH T

WHERE S.BCITY=' Burnaby ' and T.ASSETS > S.ASSETS

String Operation

The most commonly used operation on strings is pattern matching using the operator LIKE.

Patterns are case sensitive, e.g., 'Jim' does not match 'jim'.

String matching operators % (any substring) and _ (underscore, matching any

character). E.g., '_ _ _ %' matches any string with at least 3 characters. We can use NOT

LIKE for string mismatching.

e.g., Find all customers whose street includes the substring "Main".

SELECT CNAME

FROM CUSTOMER

WHERE STREET LIKE '%Main%'

Backslash overrides the special meaning of symbols. Use the keyword ESCAPE to

define the escape character. E.g., LIKE 'ab%tely\%\' ESCAPE '\' matches all the strings

beginning with 'ab' followed by a sequence of characters and then ' tely' and then '%

\' .

SQL also permits a variety of functions on character strings, such as concatenating

(using 'I'), extracting substrings, finding the length of strings, converting between upper

case and lower case, and so on.

Ordering the Display of Tuples

SQL allows the user to control the order in which tuples are displayed.

• ORDER by makes tuples appear in sorted order (ascending order by default).

• DESC specifies descending order.

• ASC specifies ascending order.

SELECT *

FROM LOAN

ORDER BY AMOUNT DESC, LOAN# ASC

Chapter 03 – Relational Language-SQL 75

Sorting can be costly, and should only be done when needed.

Set Operations

SQL has the set operations UNION(U), INTERSECT(∩) and EXCEPT(−).

Find all customers having an account.

SELECT DISTINCT CNAME

FROM DEPOSITOR

UNION: Find all customers having a loan, an account, or both.

 (SELECT CNAME

FROM DEPOSITOR)

UNION

(SELECT CNAME

FROM BORROWER)

INTERSECT: Find customers having a loan and an account.

 (SELECT CNAME

FROM DEPOSITOR)

 INTERSECT

(SELECT CNAME

FROM BORROWER)

EXCEPT: Find customers having an account, but not a loan.

(SELECT CNAME

FROM DEPOSITOR)

EXCEPT

(SELECT CNAME

FROM BORROWER)

Some additional details:

• UNION eliminates duplicates, being a set operation. If we want to retain duplicates, we

may use UNION ALL, similarly for INTERSECT and EXCEPT.

• Not all implementations of SQL have these set operations.

• EXCEPT in SQL-92 is called MINUS in SQL-86.

• It is possible to express these queries using other operations.

76 Chapter 03 – Relational Language-SQL

Aggregate Functions

In SQL we can compute functions on groups of tuples using the group by clause. Attributes

given are used to form groups with the same values. SQL can then compute

• average value -- AVG

• minimum value -- MIN

• maximum value -- MAX

• total sum of values -- SUM

• number in group -- COUNT

These are called aggregate functions. They return a single value.

e.g., Find the average account balance at each branch.

SELECT BNAME, AVG (BALANCE)

FROM CCOUNT

GROUP BY BNAME

Find the number of depositors at each branch.

SELECT BNAME, COUNT (DISTINCT CNAME)

 FROM ACCOUNT, DEPOSITOR

WHERE ACCOUNT.ACCOUNT#= DEPOSITOR.ACCOUNT#

GROUP BY BNAME

We use DISTINCT so that a person having more than one account will not be counted

more than once.

Find branches and their average balances where the average balance is more than

$1200.

SELECT BNAME, AVG (BALANCE)

FROM ACCOUNT

GROUP BY BNAME

HAVING AVG (BALANCE)> 1200

Chapter 03 – Relational Language-SQL 77

Predicates in the HAYING clause are applied after the formation of groups.

Find the average balance of each customer who lives in ‘Vancouver’ and has at least

three accounts:

SELECT DEPOSITOR.CNAME, AVG (BALANCE)

FROM DEPOSITOR, ACCOUNT, CUSTOMER

WHERE DEPOSITOR.CNAME= CUSTOMER.CNAME and

ACCOUNT.ACCOUNT#= DEPOSITOR.ACCOUNT# and

CCITY='VANCOUVER'

GROUP BY DEPOSITOR.CNAME

HAVING COUNT (DISTINCT ACCOUNT#) >= 3

If a WHERE clause and a HAYING clause appear in the same query, the WHERE

clause predicate is applied first.

• Tuples satisfying WHERE clause are placed into groups by the GROUP BY clause.

• The HAVING clause is applied to each group.

• Groups satisfying the HAVING clause are used by the SELECT clause to generate the

result tuples.

• If no HAVING clause is present, the tuples satisfying the WHERE clause are treated as

a single group.

NULL Values

With insertions, we saw how NULL values might be needed if values were unknown.

Queries involving NULLs pose problems.

If a value is not known, it cannot be compared or be used as part of an aggregate

function. All comparisons involving NULL are false by definition. However, we can use

the keyword NULL to test for NULL values:

SELECT DISTINCT LOAN#

FROM LOAN

WHERE AMOUNT IS NULL

78 Chapter 03 – Relational Language-SQL

All aggregate functions except COUNT ignore tuples with NULL values on the

argument attributes.

3.4.5 Netsted Subqueies

Set Membership

We use the IN and NOT IN operations for set membership.

SELECT DISTINCT CNAME

FROM BORROWER

WHERE CNAME IN (SELECT CNAME

FROM ACCOUNT

WHERE BNAME='SFU')

Note that we can write the same query several ways in SQL.

We can also test for more than one attribute:

SELECT DISTINCT CNAME

FROM BORROWER, LOAN

WHERE BORROWER.LOAN#= LOAN.LOAN# and BNAME ='SFU' and

(BNAME, CNAME) IN (SELECT BNAME, CNAME

FROM ACCOUNT, DEPOSITOR

WHERE DEPOSITOR.ACCOUNT# = ACCOUNT.ACCOUNT#)

This finds all customers who have a loan and an account at the ‘SFU’ branch in yet

another way. Finding all customers who have a loan but not an account, we can use the

NOT IN operation.

Set Comparison

To compare set elements in terms of inequalities, we can write

SELECT DISTINCT T.BNAME

Chapter 03 – Relational Language-SQL 79

FROM BRANCH T, BRANCH S

WHERE T.ASSETS > S.ASSETS

AND S.BCITY= 'BURNABY'

or we can write

SELECT BNAME

FROM BRANCH

WHERE ASSETS > SOME (SELECT ASSETS

FROM BRANCH

WHERE BCITY='BURNABY')

to find branches whose assets are greater than some branch in Burnaby.

We can use any of the equality or inequality operators with SOME. If we change >

SOME to >ALL, we find branches whose assets are greater than all branches in Burnaby.

e.g., Find branches with the highest average balance. We cannot compose aggregate

functions in SQL, e.g. we cannot do MAX(AVG(...)). Instead, we find the branches for

which average balance is greater than or equal to all average balances:

SELECT BNAME

FROM ACCOUNT

GROUP BY BNAME

HAVING AVG (BALANCE) >= ALL (SELECT AVG (BALANCE)

FROM ACCOUNT

 GROUP BY BNAME)

Test for Empty Relations

The EXISTS construct returns true if the argument subquery is nonempty. Find all

customers who have a loan and an account at the bank.

SELECT CNAME

FROM BORROWER

WHERE EXISTS (SELECT *

FROM DEPOSITOR

WHERE DEPOSITOR.CNAME =

BORROWER.CNAME)

80 Chapter 03 – Relational Language-SQL

Test for the Absence of Duplicate Tuples

The UNIQUE construct returns true if the argument subquery contains no duplicate tuples.

Find all customers who have only one account at the ‘SFU’ branch.

SELECT T.CNAME

FROM DEPOSITOR AS T

WHERE UNIQUE (SELECT R.CNAME

FROM ACCOUNT, DEPOSITOR AS R

WHERE T.CNAME = R.CNAME and

 R.ACCOUNT# = ACCOUNT.ACCOUNT#

and ACCOUNT.BNAME = ' SFU')

3.4.6 Joined Relations

Each variant of the join operations in SQL-92 consists of a join type and a join condition.

1. Join types: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL

OUTER JOIN

The keyword INNER and OUTER are optional since the rest of the join type enables

us to deduce whether the join is an inner join or an outer join.

SQL-92 also provides two other join types:

• CROSS JOIN: an inner join without a join condition.

• UNION JOIN: a full outer join on the 'false' condition, i.e., where the inner join is

empty.

2. Join conditions: NATURAL ON predicate USING (A1, A2,, AN)

The use of join condition is mandatory for outer joins, but is optional for inner joins (if it

is omitted, a Cartesian product results).

Two given relations: Loan and Borrower.

Chapter 03 – Relational Language-SQL 81

Figure 3.7 the Loan and Borrower relations

• Inner join:

 LOAN INNER JOIN BORROWER ON LOAN.LOAN# = BORROWER.LOAN#

Notice that the loan# will appear twice in the inner joined relation.

Figure 3.8 the result of Loan inner join Borrower

bname loan# amount Cname loan#

Downtown

Redwood

L-170 L-

230

3000

4000

Jones

Smith

1-170

1-230

• Left outer join:

 LOAN LEFT OUTER JOIN BORROWER ON LOAN.LOAN# =

BORROWER.LOAN#

Figure 3.9 the result of Loan left outer join Borrower

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170

Redwood L-230 4000 Smith L-230

Perryridge L-280 1700 nu11 null

• Natural inner join: _

 LOAN NATURAL INNER JOIN BORROWER

Figure 3.10 the result of Loan natural inner join Borrower

bname loan# amount cname

Downtown L-170 3000 Jones

Redwood L-230 4000 Smith

• Natural full outer join :

 LOAN NATURAL FULL OUTER JOIN BORROWER USING(LOAN#)

bname Loan# amount

Downtown L-170 3000

Redwood L-230 4000

Perryridge L-260 1700

cname loan#

Jones L-170

Smith L-230

Hayes L-155

82 Chapter 03 – Relational Language-SQL

Figure 3.11 the result of Loan natural full outer join Borrower using (loan#)

bname loan# amount cname

Downtown L-170 3000 Jones

Redwood L-230 4000 Smith

Perryridgc L-260 1700 null

null L-155 null Hayes

Find all customers who have either an account or a loan (but not both) at the bank.

SELECT CNAME

FROM (NATURAL FULL OUTER JOIN BORROWER)

 WHERE ACCOUNT# IS NULL OR LOAN# IS NULL

3.5 Embedded SQL

 Other SQL Features is special language to assist application programmers in creating

temples on the screen for a user interface.

SQL provides a powerful declarative query language. However, access to a database from

a general-purpose programming language is required because,

• SQL is not as powerful as a general-purpose programming language. There are queries

that cannot be expressed in SQL, but can be programmed in C, Java, etc.

• Nondeclarative actions - such as printing a report, interacting with a user, or sending

the result to a GUI - cannot be done from within SQL.

The SQL standard defines embedding of SQL as embedded SQL and the language in which

SQL queries are embedded is referred as host language. The result of the query is made

available to the program one tuple (record) at a time.

To identify embedded SQL requests to the preprocessor, we use EXEC SQL statement:

EXEC SQL embedded_SQL_statement END-EXEC

Embedded SQL statements: DEC LARE CURSOR, OPEN, and FETCH statements.

EXEC SQL

DECLARE C CURSOR FOR

SELECT CNAME, CCITY

FROM DEPOSIT, CUSTOMER

Chapter 03 – Relational Language-SQL 83

WHERE DEPOSIT.CNAME = CUSTOMER.CNAME

and DEPOSIT.BALANCE> :AMOUNT

END-EXEC

where: AMOUNT is a host-language variable.

EXEC SQL

OPEN C

END-EXEC

This statement causes the DB system to execute the query and to save the results within a

temporary relation.

A series of FETCH statement are executed to make tuples of the results available to the

program.

EXEC SQL

FETCH C INTO :CN, :CC

END-EXEC

The program can then manipulate the variable: CN and :cc using the features of the host

programming language.

A single FETCH request returns only one tuple. We need to use a WHILE loop (or

equivalent) to process each tuple of the result until no further tuples (when a variable in

the SQLCA is set).

We need to use close statement to tell the DB system to delete the temporary relation that

held the result of the query.

EXEC SQL

CLOSEC

END-EXEC

Embedded SQL can execute any valid UPDATE, INSERT, or DELETE statements.

Dynamic SQL component allows programs to construct and submit SQL queries at run

84 Chapter 03 – Relational Language-SQL

time. SQL-92 also contains a module language, while allows procedures to be defined in

SQL.

Chapter 03 – Relational Language-SQL 85

 SQL is the most popular computer language used to create, modify, retrieve and

manipulate data from relational database management systems. According to

history, during 1970s a group at IBM’s San Jose research center developed a

database and then Oracle to date. SQL is standardized by ANSI and ISO. The

programming language is integrated with SQL or use SQL commands to use in

database.As time goes on, SQL is more developed and more useful.

 DDL or Data Definition Language actually consists of the SQL commands that

can be used to define the database schema.

 In a SQL database, a schema is a list of logical structures of data. Attribute is

or the conjunction of a column.

 Integrity Constraints are the protocols that a table's data columns must follow.

 Domain integrity constraint contains a certain set of rules or conditions to

restrict the kind of attributes or values a column can hold in the database table.

 Referential Integrity is a constraint in the database that enforces the relationship

between two tables.

 Domain is value of attribute. Domain have type char(n) (or character(n)): fixed-

length character string, with user-specified length. varchar(n) (or character

varying): variable-length character string, with user-specified maximum length. int

or integer: an integer (length is machine-dependent). MySQL primary key is a single

or combination of the field, which is used to identify each record in a table uniquely.

 views is a virtual table based on the result-set of an SQL statement.

 index is an on-disk structure associated with a table or view that speeds retrieval

of rows from the table or view.

 Interactive data manipulation language (DML) a query language based on both

relational algebra and tuple relational calculus, plus commands to insert, delete and

modify tuples.

Summary

86 Chapter 03 – Relational Language-SQL

 Data Modification (The INSERT, UPDATE, DELETE, SELECT and

MERGE) statement are collectively referred to as DML (Data Manipulation

Language) statements.

 Insert data into a relation, we either specify a tuple, or write a query whose

result is the set of tuples to be inserted. Attribute values for inserted tuples must be

members of the attribute's domain.

 Updating allows us to change some values in a tuple without necessarily

changing all.

 Deletion is expressed in much the same way as a query. Instead of displaying,

the selected tuples are removed from the database. We can only delete whole tuples.

 Data retrieval means obtaining data from a Database Management System

(DBMS) such as ODBMS. Basic structure of an SQL expression consist of SELECT,

FROM, and Where clause.

 The Rename Operation is mechanism to rename both relations and attributes.

 Tuple variable can be used in SQL, and are defined in the FROM clause.

 String is pattern matching using the operator LIKE. Patterns are case sensitive.

 Ordering the Display of Tuples. In SQL allow the user to control the order in

which tuples are displayed (ORDER, DESC, ASC).

 Duplicate Tuples we use the DISTINCT Keyword. The SELECT DISTINCT

statement is used to return only distinct (different) values.

 SQL has the set operations UNION, INTERSECT, EXCEPT.

 Aggregate function performs a calculation on a set of values, and returns a

single value. SQL can then compute (average, minimum, maximum, total, number).

 Null value is a field with a NULL value is a field with no value.

Chapter 03 – Relational Language-SQL 87

 Netsted Subqueies is a SELECT query embedded within the WHERE or HAVING

clause of another SQL query.

 We use the IN and NOT IN operations for set membership.

 To set compare set in terms of inequalities. The EXISTS operator is used to test

for the existence of any record in a subquery. SQL-92 allows a subquery expression

to be used in the from clause.

 Joined Relations a logical connection that represents the relationship between

two Cis. Join types: INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL

OUTER JOIN).

 Other SQL Features is special language to assist application programmers in

creating temples on the screen for a user interface.

1. What is DDL: Data Definition Language?

2. What are type of constraint in SQL?

3. What is Domain type? Please detail each section of the Domain Type?

4. What is view?

5. What is DML: Data Modification?

6. What is Insert? Please give command example?

7. What is Update? Please give command example?

8. What is Delete? Please give command example?

9. What is Select (Data Retrieval)? Please give command example?

10. How do you order a displayed of tuples?

11. What is aggregate functions in SQL with example?

12. What are operations for use in set membership?

13. What are comparison operator used in conditions that compares one

expression with another?

14. What is Jointed Relation?

15. What are the Type of Join in SQL?

16. What is embedded SQL? Please give example?

Questions

88 Chapter 03 – Relational Language-SQL

1. What is the syntax to create a database in SQL?

2. What is the syntax to create a Table in SQL?

3. What is the syntax for insert in SQL?

4. What is the syntax of update in SQL?

5. What is the syntax of Select command in SQL?

6. What is the syntax of the aggregate function in SQL?

7. What is the syntax of ORDER BY in SQL?

8. What is the syntax of join in SQL?

Exercises

Chapter 04

Entity-Relationship Model

 In this chapter, you will learn:

4.1 Overview

4.2 Entity and Entity Set

4.3 Relationship and Relationship Set

4.4 Keys

4.5 E-R Diagram

4.6 Reducing E-R Diagrams to Tables

 4.6.1 Strong Entity sets

 4.6.2 Relationship sets

 4.6.3 Generalization

 Objective

 To understand Entity-Relationship model

 To understand Entity and Entity Set

 To explain Relationship and Relationship Set

 To explain Keys

 To explain E-R Diagram

 To understand Reducing E-R Diagrams to Tables

Chapter 04 – Entity-Relationship Model 91

4.1 Overview

Data modeling is the process of analyzing and defining all the different data your business

collects and produces, as well as the relationships between those bits of data. The data

modeling the entity-relational mode is intended primarily for the DB design and the entity-

relationship model or entity-relationship diagram (ERD) is a data model or diagram for

high-level description of conceptual data models.

The entity-relationship model or entity-relationship diagram (ERD) is a data model or

diagram for high-level descriptions of conceptual data models, and it provides a graphical

notation for representing such data models in the form of entity relationship diagrams.

Such models are typically used in the first stage of information-system design; they are

used, for example, to describe information needs and/or the type of information that is to

be stored in the database during the requirements analysis.

The data modeling technique, however, can be used to describe any ontology (i.e.an

overview and classifications of used terms and their relationships) for a certain universe of

discourse (i.e. area of interest). In the case of the design of an information system that is

based on a database, the conceptual data model is, at a later stage (usually called logical

design), mapped to a logical data model, such as the relational model; this in tum is mapped

to a physical model during physical design. Note that sometimes, both of these phases are

referred to as "physical design". The E-R (entity-relationship) data model views the real

world as a set of basic objects (entities) and relationships among these objects.

The entity-relationship mode is intended primarily for the DB design process by allowing

the specification of an enterprise scheme. This represents the overall logical structure of

the DB.

4.2 Entity and Entity Set

An entity is a real-world thing or a real-world object which is distinguishable from other

objects in the real world. An entity set is a set of entities of the same type. Attribute is a

function which maps an entity set into a domain. The domain is the set of permitted values.

An entity is an object that exists and is distinguishable from other objects. For instance,

"John Harris with S.S.N. (Social Security Number) 890-12-3456" is an entity, as he can be

uniquely identified as one particular person in the universe. An entity may be concrete (a

person or a book, for example) or abstract (like a holiday or a concept).

92 Chapter 04 – Entity-Relationship Model

An entity set is a set of entities of the same type (e.g., all persons having an account at a

bank). Entity sets need not be disjoint. For example, the entity set "employee" (all

employees of a bank) and the entity set "customer" (all customers of the bank) may have

members in common. Figure 4.1 shows two entity sets, "customer" and "loan".

Figure 4.1 two entity sets, "customer" and "loan"

Attributes

An entity is represented by a set of attributes, e.g. name, S.S.N., street, city for "customer"

entity. The domain of the attribute is the set of permitted values (e.g. the telephone number

must be seven positive integers).

Formally, an attribute is a function which maps an entity set into a domain. Every entity

is described by a set of (attribute, data value) pairs. There is one pair for each attribute of

the entity set. E.g. a particular "customer" entity is described by the set {(name, Harris),

(S.S.N., 890-123-456), (street, North), (city, Georgetown)}.

An analogy can be made with the programming language notion of type definition. The

concept of an entity set corresponds to the programming language type definition. A

variable of a given type has a particular value at a point in time. Thus, a programming

language variable corresponds to an entity in the E-R model.

For example, five entity sets and their attributes are introduced below:

• Branch, the set of all branches of a particular bank. Each branch is described by the

attributes branch-name, branch-city and assets.

• Customer, the set of all people having an account at the bank. Attributes are customer-

name, S.S.N., street and customer-city.

• Employee, with attributes employee-name and phone-number.

 customer loan

321-12-3123 Jones Main Harrison

019-28-3746 Smith North Rye

677-89-9011 Hayes Main Harrison

555-55-5555 Jackson Dupont Woodside

244-66-8800 Curry North Rye

963-96-3963 Williams Nassau Princeton

335-57-7991 Adams Spring Pitlsfield

L-17 1000

L-23 2000

L-15 1500

L-14 1500

L-19 400

L-11 900

L-16 1300

Chapter 04 – Entity-Relationship Model 93

• Account, the set of all accounts created and maintained in the bank. Attributes are account

-number and balance.

• Transaction, the set of all account transactions executed in the bank. Attributes are

transaction-number, date and amount.

4.3 Relationship and Relationship Set

A relationship is an association among several entities. A relationship set is a collection

of relationships of the same type, and an entity set is a collection of entities of the same

type. The terms superkey, candidate key, and primary key apply to entity and relation-ship

sets as they do for relation schemas. Identifying the primary key of a relationship set

requires some care, since it is composed of attributes from one or more of the related entity

sets. Mapping cardinalities express the number of entities to which another entity can be

associated via a relationship set. There are 4 mapping cardinality must be one of: one-to-

one.one-to-many, many-to-one and many-to-many.

A relationship is an association between several entities. A relationship set is a set of

relationships of the same type.

Formally it is a mathematical relation on ≥ 2 (possibly non-distinct) sets. If E1, E2,…, En

are entity sets, then a relationship set R is a subset of

{(e1, e2,…,en)| e1 ∈ E1, e2 ∈ E2, ... , en ∈ En}

, where (e1 , e2, ... ,en) is a relationship.

For example, consider the two entity sets customer and loan shown in Fig. 4.1. We define

the relationship CustLoan to denote the association between customers and their loans.

This is a binary relationship set shown in Figure 4.2.

Figure 4.2 a binary relationship set between customers and their loans

 customer loan

321-12-3123 Jones Main Harrison

019-28-3746 Smith North Rye

677-89-9011 Hayes Main Harrison

555-55-5555 Jackson Dupont Woodside

244-66-8800 Curry North Rye

963-96-3963 Williams Nassau Princeton

335-57-7991 Adams Spring Pitlsfield

L-17 1000

L-23 2000

L-15 1500

L-14 1500

L-19 400

L-11 900

L-16 1300

94 Chapter 04 – Entity-Relationship Model

Going back to the formal definition, the relationship set CustLoan is a subset of all the

possible customer and account pairings. This is a binary relationship. Occasionally there

are relationships involving more than two entity sets.

Roles and Attributes

The role of an entity is the function it plays in a relationship. For example, the

relationship works-for could be ordered pairs of employee entities. The first employee

takes the role of manager, and the second one will take the role of worker.

A relationship may also have descriptive attributes. For example, date (last date of

account access) could be an attribute of the depositor relationship set between the customer

and account entity set shown in Figure 4.3.

Figure 2.3 the depositor relationship set

It is possible to define a set of entities and the relationships among them in a number of

different ways. The main difference is in how we deal with attributes.

Consider the entity set employee with attributes employee-name and phone- number.

We could argue that the phone be treated as an entity itself, with attributes phone-number

and location. Then we have two entity sets, and the relationship set EmpPhn defining

the association between employees and their phones. This new definition allows

employees to have several (or zero) phones. New definition may more accurately reflect

the real world.

deposit(access-date)

customer(customer-name) account(account-number)

24 May 1996

3 June 1996

21 June 1996

10 June 1996

17 June 1996

28 May1996

28 May 1996

24 June 1996

23 May 1996

Johnson

Smith

Hayes

Turner

Jones

Lindsay

A-101

A-215

A-102

A-305

A-201

A-222

A-217

Chapter 04 – Entity-Relationship Model 95

We cannot extend this argument easily to making employee-name an entity. The

question of what constitutes an entity and what constitutes an attribute depends

mainly on the structure of the real world situation being modeled, and the semantics

associated with the attribute in question.

An E-R scheme may define certain constraints to which the contents of a database must

conform: mapping cardinalities and existence dependencies.

Mapping cardinalities

Mapping cardinalities express the number of entities to which another entity can be

associated via a relationship. For binary relationship sets between entity sets A and B, the

mapping cardinality must be one of:

• one-to-one: An entity in A is associated with at most one entity in B, and an entity in B

is associated with at most one entity in A. (Figure 4.4 (a))

• one-to-many: An entity in A is associated with any number in B. An entity in B is

associated with at most one entity in A. (Figure 4.4(b))

• many-to-one: An entity in A is associated with at most one entity in B. An entity in B is

associated with any number in A. (Figure 4.5 (a))

• many-to-many: Entities in A and B are associated with any number from each other.

(Figure 4.5(b))

Figure 4.4 (a) one-to-one (b) one-to-many

 A B A B

 (a) (b)

a1

a2

a3

a1

a2

b1

b2

b1

b2

b3

 b4

 b5

 a3

b3

a4 b4

b3

96 Chapter 04 – Entity-Relationship Model

Figure 4.5 (a) many-to-one (b) many-to-many

 A B A B

 (a) (b)

The appropriate mapping cardinality for a particular relationship set depends on the real

world being modeled. (Think about the CustLoan relationship in Figure 4.2.) Further,

mapping cardinalities affect the ER design.

For example, we can make access-date an attribute of account in Figure 4.4, instead of

a relationship attribute, 1 each account can have only one customer. I.e., the relationship

from account to customer is many to one, or equivalently, customer to account is one to

many as shown in Figure 4.6.

Figure 4.6 the relationship from account to customer

account (account-number, access-date)

customer(customer-name)

 deposit

Johnson

Smith

Hayes

Turner

Jones

Lindsay

A-101 24 May 1996

A-215 3 June 1996

A-102 10 June 1996

A-305 28 May1996

A-201 17 June 1996

A-222 24 June 1996

A-217 23 May 1996

a1

a2

a3

 a4

 a5

b1

b2

 b3

 a1

b1

a2 b2

 a3 b3

 a4 b4

Chapter 04 – Entity-Relationship Model 97

Existence dependencies

Existence dependencies are that if the existence of entity X depends on the existence

of entity Y, then X is said to be existence dependent on Y. (Or we say that Y is the

dominant entity and X is the subordinate entity.)

For example, consider account and transaction entity sets, and a relationship log

between them. This is one-to-many from account to transaction. If an account entity is

deleted, its associated transaction entities must also be deleted. Thus account is dominant

and transaction is subordinate.

4.4 Keys

Key is an attribute or a set of attributes that help to uniquely identify a tuple (or row) in a

relation (or table) type of Key in DB: Primary Key, Super Key. Candidate Key, Alternate

Key, Foreign Key, Composite Key, Unique Key. The terms superkey, candidate key, and

primary key apply to entity and relationship sets as they do for relation schemas.

Identifying the primary key of a relationship set requires some care, since it is composed

of attributes from one or more of the related entity sets.

Differences between entities must be expressed in terms of attributes. A superkey is a set

of one or more attributes that, taken collectively, allow us to identify uniquely an entity in

the entity set. For example, in the entity set customer, customer-name and S.S.N. is a

superkey. Note that customer-name alone is not, as two customers could have the same

name.

A superkey may contain extraneous attributes, and we are often interested in the smallest

superkey. A superkey for which no subset is a superkey is called a candidate key. In the

example above, S.S.N. is a candidate key, as it is minimal, and uniquely identifies a

customer entity.

A primary key is a candidate key (there may be more than one) chosen by the DB designer

to identify entities in an entity set. An entity set that does not possess sufficient attributes

to form a primary key is called a weak entity set. One that does have a primary key is called

a strong entity set.

Primary keys for weak entity sets

For example, the entity set transaction has attributes transaction-number, date and amount.

Different transactions on different accounts could share the same number. These are not

sufficient to form a primary key (uniquely identify a transaction). Thus transaction is a

weak entity set.

98 Chapter 04 – Entity-Relationship Model

For a weak entity set to be meaningful, it must be part of a one-to-many relationship

set. This relationship set should have no descriptive attributes. (Why?) The idea of strong

and weak entity sets is related to the existence dependencies seen earlier.

Member of a strong entity set is a dominant entity. Member of a weak entity set is a

subordinate entity. A weak entity set does not have a primary key, but we need a means of

distinguishing among the entities. The discriminator of a weak entity set is a set of

attributes that allows this distinction to be made. The primary key of a weak entity set is

formed by taking the primary key of the strong entity set on which its existence depends

(see Mapping Constraints) plus its discriminator.

To illustrate: transaction is a weak entity. It is existence-dependent on account. The

primary key of account is account-number. Transaction-number distinguishes transaction

entities within the same account (and is thus the discriminator). So the primary key

for transaction would be (account-number, transaction-number).

Just Remember: the primary key of a weak entity is found by taking the primary key of

the strong entity on which it is existence-dependent, plus the discriminator of the weak

entity set.

Primary keys for relationship sets

The attributes of a relationship set are the attributes that comprise the primary keys of the

entity sets involved in the relationship set. For example, S.S.N. is the primary key of

customer, and account-number is the primary key of account. The attributes of the

relationship set CustAcct are then (account-number, S.S.N.).

This is enough information to enable us to relate an account to a person. If the

relationship has descriptive attributes, those are also included in its attribute set. For

example, we might add the attribute date to the above relationship set, signifying the date

of last access to an account by a particular customer. Note that this attribute cannot instead

be placed in either entity set as it relates to both a customer and an account, and the

relationship is many-to-many.

The primary key of a relationship set R depends on the mapping cardinality and the

presence of descriptive attributes. With no descriptive attributes:

1. many-to-many: all attributes in R.

2. one-to-many: primary key for the "many" entity.

3. one-to-one: primary key of either entity.

Chapter 04 – Entity-Relationship Model 99

Descriptive attributes may be added, depending on the mapping cardinality and the

semantics involved.

4.5 E-R Diagram

A database design specified by an E-R diagram can be represented by a collection of

relation schemas. For each entity set and for each relationship set in the database, there

is a unique relation schema that is assigned the name of the corresponding entity set or

relationship set. This forms the basis for deriving a relational database design from an E-

R diagram. E-R diagram basic components are: rectangles ellipses, diamonds and lines.

There are a number of conventions for entity-relationship diagrams (ERDs). The classical

notation is described in the remainder of this article, and mainly relates to conceptual

modeling. There are a range of notations more typically employed in logical and physical

database design, including information engineering, IDEF1x (ICAM DEFinition

Language) and dimensional modeling.

We can express the overall logical structure of a database graphically with an E- R diagram.

Its basic components are:

1. rectangles representing entity sets.

2. ellipses representing attributes.

3. diamonds representing relationship sets.

4. lines linking attributes to entity sets and entity sets to relationship sets. In the text,

lines may be directed (have an arrow on the end) to signify mapping cardinalities for

relationship sets.

The summaries of symbols used in E-R notation are shown in Figures 4.7, 4.8.

Figure 4.7 the summary of symbols

 Entity Attribute

 Weak Entity Multivalued

 Attribute

 Relationship Set Derived Attribute

 Identifying Total

 Relationship Participation

 Set for Weak of Entity Set

 Entity Set

 Discriminating

 Primary Key Attribute of

 Weak Entity Set

E A

 E A

R A

R

A

R E

A

100 Chapter 04 – Entity-Relationship Model

Figure 4.8 the summary of symbols

Figure 4.9 shows an example with two entity sets and a relationship set. In this example,

the primary key of customer is customer-id, and the primary key of account is account-

number respectively. Go back and review mapping cardinalities. They express the number

of entities to which an entity can be associated via a relationship. The arrow positioning is

simple once you get it straight in your mind. Think of the arrow head as pointing to the

entity that "one" refers to. Thus, in this example, the cardinality of the relationship set

depositor is many-to-many.

Figure 4.9 an example with two entity sets and a relationship set

Other styles of E-R diagram

The text uses one particular style of diagram. Many variations exist. Some of the variations

we will see are:

• Diamonds being omitted - a link between entities indicates a relationship. (See

Figure 4.10)

- Less symbols, clearer picture.

- What happens with descriptive attributes?

Many to Many Many to One

Relationship Relationship

One to One Cardinality

Relationship Limits

 ISA

 Role Indicator (Specialization or

 Generalization)

Total Disjoint

Generalization Generalization

 disjoint

R R

R R E
I..h

R E

role-name

 ISA

 ISA ISA

Customer-name Customer-street

Customer-id

Customer

Customer-city

deposit account

balance account-number
access-date

Chapter 04 – Entity-Relationship Model 101

- In this case, we have to create an intersection entity to possess the attributes.

• Numbers instead of arrowheads indicating cardinality. (See Figure 4.10)

- Symbols, 1, n and m used.

- E.g. 1 to 1, 1 to n, n to m.

- Easier to understand than arrowheads.

Figure 4.10 numbers instead of arrowheads indicating cardinality

• A range of numbers indicating optionality of relationship. (See Figure 4.11)

- E.g (0,1) indicates minimum zero (optional), maximum 1.

- Can also use (0,n), (1,1) or (1 ,n).

- Typically used on near end of link - confusing at first, but gives more information.

- E.g. entity 1 (0, 1) -- (1,n) entity 2 indicates that entity 1 is related to between 0 and 1

occurrences of entity 2 (optional).

- Entity 2 is related to at least 1 and possibly many occurrences of entity 1

(mandatory).

Figure 4.11 optionality of relationship

• Multivalued attributes may be indicated in some manner.

E

Entity set E with

Attributes A1, A2, A3

And primary key A1

Many to Many

Relationship

One to One

Relationship

Many to One

Relationship

A1

A2

A3

R
R

* *

R
1 1

R

R
1 *

R

customer-name customer-street

customer-id

customer

Customer-city

loan

amount loan-number

borrower
0..* 1.1

102 Chapter 04 – Entity-Relationship Model

- Means attribute can have more than one value, e.g. hobbies.

- Has to be normalized later on.

• Extended E-R diagrams allowing more details/constraints in the real world to be recorded.

(See Figures 4.12, 4,13)

- Composite attributes.

- Derived attributes.

- Subclasses and super classes.

- Generalization and specialization.

Figure 4.12 composite attributes

Figure 4.13 multivalue and derived attributes

Roles in E-R Diagrams

The function that an entity plays in a relationship is called its role. Roles are normally

explicit and not specified. They are useful when the meaning of a relationship set needs

clarification. For example, the entity sets of a relationship may not be distinct. The

relationship works-for might be ordered pairs of employees (first is manager, second is

worker).

In the E-R diagram, this can be shown by labeling the lines connecting entities

(rectangles) to relationships (diamonds). (See figure 9.14).

Composite name address

Attributes

 First-name middle-initial last-name Street city state postal-code

Component

Attributes

 Street-number street-name apartment-number

middle-initial

first-name last-name

name

customer-id

address

city

Street-name

Street-number apartment-number

street

state

customer
zip-code

age
Phone-number date-of-birth

Chapter 04 – Entity-Relationship Model 103

Figure 4.14 the meaning of a relationship

Weak Entity Sets in E-R Diagrams

A weak entity set is indicated by a doubly-outlined box. For example, the weak entity set

payment is dependent on the strong entity set loan via the relationship set loan-payment.

Figure 4.15 shows this example.

Figure 4.15 the weak entity set

Non-binary Relationships

Non-binary relationships can easily be represented. Figure 4.16 shows an E-R diagram

with a ternary relationship.

Figure 4.16 a ternary relationship

employee-name

employee-id telephone-number

manager

employee

worker

works-for

loan-number

amount

laon laon-payment payment

payment-date

payment-number payment-amount

title

work-on

level

job

street

city

employee

employee-name

employee-id

branch

branch-city

branch-name
assets

104 Chapter 04 – Entity-Relationship Model

4.6 Reducing E-R Diagrams to Tables

Reduction of ER diagram to Table. The database can be represented using the notations,

and these notations can be reduced to a collection of tables.

A database conforming to an E-R diagram can be represented by a collection of tables. For

each entity set and relationship set, there is a unique table which is assigned the name of

the corresponding set. Each table has a number of columns with unique names. The E-R

diagram of Figure 4.17 is used as an example.

Figure 4.17 an E-R diagram for a bank

branch

 Branch-name
 Branch-city

 assets

 loan-branch

loan

 loan-number

 amount

 borrower customer

 Customer-id

 customer-name

 Customer-street

 Customer-city

loan-

payment payment

 payment-number

 payment-date

 Payment-amount

 cust-

 deposit

 access-date

 type

account

 account-number balance

employee works-for

 Customer-id

 Deposit-name

 employee-

 employer-name

 Deposit-number

 start-time

account Checking-account

ISA

 interest-rate overdraft-amount

Chapter 04 – Entity-Relationship Model 105

4.6.1 Strong Entity sets

We use a table with one column for each attribute of the set. Each row in the table

corresponds to one entity of the entity set. For the entity set customer, see the table of

Figure 4.18.

Figure 4.18 the entity set – customer

Weak Entity Sets

For a weak entity set, we add columns to the table corresponding to the primary key of the

strong entity set on which the weak set is dependent. For example, the weak entity set

payment has four attributes: loan-number, payment-number, payment-date and payment -

amount. The primary key of payment is {loan-number, payment -number}. This gives us

the table of Figure 4.19.

Figure 4.19 the weak entity set - payment

4.6.2 Relationship sets

Let R be a relationship set involving entity sets E1, E2,.. .., Em. The table corresponding to

the relationship set R has the following attributes:

∪𝑖=1
𝑚 𝑃𝑟𝑖𝑚𝑎𝑟𝑦_𝐾𝑒𝑦(𝐸𝑖)

loan-number payment-number payment-date payment-amount

L-11

L-14

L-15

L-16

L-17

L-17

L-17

L-23

L-93

L-93

53

69

22

58

5

6

7

11

103

104

7 June 2001

28 May 2001

23 May 2001

18 June 2001

10 May 2001

7 June 2001

17 June 2001

17 May 2001

3 June 2001

13 June 2001

125

500

300

135k

50

50

100

75

900

200

customer-id customer-name customer-street customer-city

019-28-3776

182-73-6091

192-83-7465

244-66-8800

321-12-3123

335-57-7991

336-66-9999

677-89-9011

963-96-3963

Smith

Turner

Johnson

Curry

Jones

Adams

Lindsay

Hayes

Williams

North

Putnam

Alma

North

Main

Spring

Park

Main

Nassau

Rye

Stamford

Palo Alto

Rye

Harrison

Pittsfield

Pittsfield

Harrison

Princeton

106 Chapter 04 – Entity-Relationship Model

If the relationship has k descriptive attributes b1, b2,…, bk, we add them too:

∪𝑖=1
𝑚 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦(𝐸𝑖)

∪ {𝑏1, 𝑏2, … 𝑏𝑘

An example: The relationship set borrower involves the entity sets customer and loan.

Their respective primary keys are customer-id and loan-number. This gives us the table of

Figure 4.20.

Figure 4.20 the relationship set – borrower

Non-binary Relationship Sets

The ternary relationship of Figure 4.17 gives us the table:

works-on(employ-id, title, branch-name)

As required, we take the primary keys of each entity set. There are no descriptive

attributes in this example.

Linking a Weak to a Strong Entity

These relationship sets are many-to-one, and have no descriptive attributes. The primary

key of the weak entity set is the primary key of the strong entity set it is existence-

dependent on, plus its discriminator.

The table for the relationship set loan-payment in Figure 4.18 would have the same

attributes as the table in Figure 4.20, and is thus redundant.

2.6.3 Generalization

We can express the similarities between the entity sets by generalization. This is the

process of forming containment relationships between a higher-level entity set and one or

more lower-level entity sets.

Consider extending the entity set account by classifying accounts as being either

savings-account or checking-account. Each of these is described by the attributes of

account plus additional attributes. (Savings has interest-rate and checking has overdraft-

amount.) In E-R diagrams, generalization is shown by a triangle ISA relationship set as

shown in Figure 4.18.

Customer-id loan-number

019-28-3746

019-28-3746

244-66-8800

321-12-3123

335-57-7991

555-55-5555

677-89-9011

963-96-3963

L-11

L-23

L-93

L-17

L-16

L-14

L-15

L-17

Chapter 04 – Entity-Relationship Model 107

Generalization hides differences and emphasizes similarities. Distinction made through

attribute inheritance: attributes of higher-level entity are inherited by lower level entities.

Two methods are available for conversion to a table form, and the following tables are

created from the entity sets generalized by the ISA relationship set in Figure 4.18.:

Method 1: Create a table for the high-level entity, plus tables for the lower-level

entities containing also their specific attributes.

account(account-number, balance)

savings-account(account-number, interest-rate)

checking-account(account-number, overdraft-amount)

Method 2: Create only tables for the lower-level entities.

savings-account(account-number, balance, interest-rate)

checking-account(account-number, balance, overdraft-amount)

108 Chapter 04 – Entity-Relationship Model

 Data modeling is the process of analyzing and defining all the different data your

business collects and produces, as well as the relationships between those bits of

data. The data modeling the entity-relational mode is intended primarily for the DB

design and the entity-relationship model or entity-relationship diagram (ERD) is a

data model or diagram for high-level description of conceptual data models.

 An entity is a real-world thing or a real-world object which is distinguishable

from other objects in the real world. An entity set is a set of entities of the same type.

Attribute is a function which maps an entity set into a domain. The domain is the set

of permitted values.

 A relationship is an association among several entities. A relationship set is a

collection of relationships of the same type, and an entity set is a collection of entities

of the same type. The terms superkey, candidate key, and primary key apply to entity

and relation-ship sets as they do for relation schemas. Identifying the primary key

of a relationship set requires some care, since it is composed of attributes from one

or more of the related entity sets. Mapping cardinalities express the number of

entities to which another entity can be associated via a relationship set. There are 4

mapping cardinality must be one of: one-to-one.one-to-many, many-to-one

and many-to-many.

 Key is an attribute or a set of attributes that help to uniquely identify a tuple (or

row) in a relation (or table) type of Key in DB: Primary Key, Super Key. Candidate

Key, Alternate Key, Foreign Key, Composite Key, Unique Key. The terms superkey,

candidate key, and primary key apply to entity and relationship sets as they do for

relation schemas. Identifying the primary key of a relationship set requires some

care, since it is composed of attributes from one or more of the related entity sets.

 A database design specified by an E-R diagram can be represented by a

collection of relation schemas. For each entity set and for each relationship set in

the database, there is a unique relation schema that is assigned the name of the

corresponding entity set or relationship set. This forms the basis for deriving a

relational database design from an E-R diagram. E-R diagram basic components

are: rectangles ellipses, diamonds and lines.

Summary

Chapter 04 – Entity-Relationship Model 109

 Reduction of ER diagram to Table. The database can be represented using the

notations, and these notations can be reduced to a collection of tables.

1. What is Entity-Relational Model?

2. What is Entity and Entity Set? Please give example?

3. What is Relationship and Relationship Set?

4. What are 4 Mapping cardinalities?

5. What is Keys?

6. What are types of Keys?

7. What is E-R Diagram?

8. What is Reducing E-R Diagrams to Tables?

1. Please look at figure 4.4 and 4.5 mapping cardinalities from textbook and

summary of the processing.

2. Please look at figure 4.7 the summary of symbols. Please describe the role of

each symbols in the E-R Diagram.

3. Please summary of the role in E-R Diagram.

Questions

Exercises

Chapter 05

SQL

In this chapter, you will learn:

5.1 Introduction

5.2 DDL: Data Definition Language

5.3 DML: Data Modification

Objective

 To practice DDL: Data Definition Language

 To practice DML: Data Modification

Chapter 05 –SQL 113

5.1 Introduction

① Data Definition Language (DDL)

- Define the structure of the database: CREATE (DATABASE, TABLE,

VIEW), DROP, ALTER

 - Specify security constraints (authorization): GRANT

② Data Manipulation Language (DML)

 - Modify data in the database: INSERT, DELETE, UPDATE

 - Query a database: SELECT

• Implemented as a part of the system R project in the early 1970's.

 ↳ DB2: RDBMS by IBM.

• ANSI published a SQL standard in 1986.

 ⇒ Then, ANSI and ISO SQL92 standard.

 ⇒ Every commercial RDBMS supports SQL92.

 (DB2, Oracle, Informix, Sybase, MS SQL-Server, MySQL etc.)

• MySQL: phpMyAdmin

 - MySQL User ID/Password

114 Chapter 05 –SQL

5.2 DDL: Data Definition Language

The most common command types in DDL are CREATE, ALTER and DROP. All three

types have a predefined syntax that must be followed for the command to run and changes

to take effect.

• Used by DBA.

• Creating a DB

 CREATE DATABASE D (…)

• Creating a relation into the DB

 CREATE TABLE R (A1 D1, A2 D2, … , An Dn)

 WHERE R: the name of the relation

 Ai: the attribute

 Di: the data type of the domain Ai

Customer

name city address

char(20) char(20) char(50)

CREATE TABLE Customer

 (name char(20) NOT NULL,

 city char(20),

 address char(50),

 PRIMARY KEY (name))

Branch

branch asset city

char(15) int char(30)

CREATE TABLE Branch

 (branch char(15) NOT NULL,

 asset integer,

 city char(30),

 PRIMARY KEY (branch))

Chapter 05 –SQL 115

Deposit

branch account name balance

char(15) char(10) char(20) int

CREATE TABLE Deposit

 (branch char(15),

 account char(10) NOT NULL,

 name char(20),

 balance integer,

 PRIMARY KEY (account),

 CHECK (balance>=100),

 FOREIGN KEY (branch) REFERENCES Branch,

 FOREIGN KEY (name) REFERENCES Customer)

CREATE TABLE Laon

 (branch char(15),

 account char(10) NOT NULL,

 name char(20),

 balance integer,

 PRIMARY KEY (account),

 CHECK (balance>=100),

 FOREIGN KEY (branch) REFERENCES Branch,

 FOREIGN KEY (name) REFERENCES Customer);

Entity integrity?

 Domain integrity?

 Referential integrity?

• Create an index on the attribute

 CREATE INDEX A-ix ON R(A)

 CREATE INDEX AB-ix ON R(A,B)

116 Chapter 05 –SQL

• Remove a relation from the DB

 DROP TABLE R /* Remove R from the DB. */

• Change a relation scheme.

 ALTER TABLE R ADD A D

 MODIFY

 DROP

e.g., ALTER TABLE R ADD A char(15)

ALTER TABLE R MODIFY A integer

 ALTER TABLE R DROP Primary Key

 → ALTER TABLE R ADD Primary Key R(A)

e.g., ALTER TABLE dept DROP PRIMARY KEY CASCADE;

 ⇒ The CASCADE option drops any 'foreign keys' that reference the primary

key

• Creating a View (NOT a relation)

 - Security considerations may require that certain data be hidden from user.

 ⇒ It is possible to support a large number of views on top of any given set of actual

relations.

 ⇒ A view must be 'recomputed' for each query that refers to it.

 e.g., CREATE VIEW DepositCustomer AS

 (SELECT account, branch, name FROM Deposit)

 e.g., CREATE VIEW AllCustomer AS

 (SELECT branch, name FROM Deposit)

 UNION

 (SELECT branch, name FROM Loan)

5.3 Data Manipulaltion Language (DML)

DML is an abbreviation for Data Manipulation Language. Data Manipulation Language

or DML represents a collection of programming languages explicitly used to make changes

Chapter 05 –SQL 117

in the database, such as: CRUD operations to create, read, update, and delete data. Using

the INSERT, SELECT, UPDATE and Delete commands

• Used by programmers.

• Insertion

 - A newly created relation is empty initially.

 ⇒ Load data into the relation.

Deposit

branch account name balance

kangnam 123 YS 1000

Loan

branch account name balance

INSERT INTO Deposit

 VALUES (‘kangnam‘, 123, ‘YS‘, 1000)

INSERT INTO (account, name, balance, branch)

 VALUES (123, ‘YS‘, 1000, ‘kangnam‘)

INSERT INTO Deposit

 (SELECT branch, account, name, 200

 FROM Loan

 WHERE branch=‘kangnam’)

INSERT INTO Deposit

 VALUES (‘kangnam‘, 123, NULL, 1000) /* Not yet determined (≠0) */

-An insertion is permitted through a view only if the view in query is defined in terms of

one relation of the actual DB.

e.g., INSERT INTO DepositCustomer VALUES (‘kangnam‘, 111, ‘Rho‘)

118 Chapter 05 –SQL

 ⇒ (‘kangnam‘, 111, ‘Rho‘, NULL) is inserted into Deposit.

 What if All Customer?

- All aggregate operation(AVG, MIN, MAX, SUM, COUNT) ignore tuples with NULL

values on the argument attributes.

e.g., SELECT SUM(balance)

 FROM Deposit

SELECT COUNT(name) AS deposit Customer

 FROM Deposit

• Updating: Change a value in a tuple

e.g., UPDATE Deposit SET balance=balance*1.05 /* interest rate= 5%*/

e.g., UPDATE Deposit SET balance=balance*1.06

 WHERE balance>10000;

 UPDATE Deposit SET balance=balance*1.05

 WHERE balance<=10000

• Deletion

e.g, DELETE FROM Loan /* delete all tuples */

 DELETE FROM Loan WHERE name=‘YS‘

 DELETE FROM Loan WHERE account BETWEEN 100 AND 200

 DELETE FROM Loan WHERE branch IN (SELECT branch

 FROM Branch

 WHERE city=‘seoul‘)

 DELETE FROM Loan WHERE balance < (SELECT AVG(balance)

 FROM Deposit)

 ⇒ ① Calculate average.

 ② Mark tuples to be deleted.

Chapter 05 –SQL 119

 ③ Once done marking, delete all marked tuples.

[Example: Bank DB]

Branch

branch asset city

kwangan

haundae

dongback

sinchon

kangnam

seocho

100

200

400

300

50

500

pusan

pusan

pusan

seoul

seoul

seoul

Customer

name city address

YS

Rho

Chun

DJ

pusan

pusan

pusan

pusan

kwangan

haundae

dongback

kwangan

Deposit

branch account name balance

kwangan

kwangan

kwangan

111

112

113

YS

Rho

Chun

100

200

400

Loan

branch account name balance

kwangan

haundae

dongback

kwangan

111

112

113

114

YS

Rho

Chun

DJ

10000

20000

40000

50000

120 Chapter 05 –SQL

desc Branch;

desc Customer;

desc Deposit;

desc Loan;

select * from Branch;

select * from Customer;

select * from Deposit;

select * from Loan;

• Query Processing

1. Translation of a high-level SQL query

 ⇒ Internal ‘relational algebra’ expression

2. Query optimization: The most efficient execution plan

 ⇒ Performance in terms of the 'no. of disk accesses' required

 ⇒ The difference between a 'bad' strategy and a 'good' strategy

1. Execution of a query: Query output

• Query-execution plan

 - Parse-tree representation

- Annotated instruction

Chapter 05 –SQL 121

• Retrieving

 SELECT A1, A2, ... , An

 FROM R1, R2, ... , Rm

 WHERE P

 where Ai: attribute

 Ri: relation

 P : predicate

SELECT * /* project all attributes of all relations */

 FROM R1, R2, ... , Rm /* in the FROM clause. */

 WHERE P

Duplicate tuples

 SELECT DISTINCT branch /* Duplicates are removed */

 FROM Deposit

 SELECT branch /* Duplicates are NOT removed */

 FROM Deposit

122 Chapter 05 –SQL

Set operations

 A list of customers who have a deposit account, a loan account, or both accounts at the

‘kwangan’ branch?

(SELECT name

 FROM Deposit

 WHERE branch=‘kwangan‘)

 UNION

 (SELECT name

 FROM Loan

 WHERE branch=‘sinchon‘)

A list of customers who have both accounts in the ‘kwangan’ branch?

(SELECT name

 FROM Deposit

 WHERE branch=‘kwangan‘)

 INTERSECT

 (SELECT name

 FROM Loan

 WHERE branch=‘sinchon‘)

A list of customers who only have a loan account at the ‘kwangan’ branch?

 ⇒ MINUS (NOT standard, Supported in System R)

 ⇒ EXCEPT

A list and city of customers who have a loan account?

Chapter 05 –SQL 123

Join

SELECT Customer.name, city

 FROM Customer, Loan

 WHERE Customer.name = Loan.name // join attr.

⇔ SELECT Customer.name, city

 FROM Customer natural join Loan // natural join

⇔ SELECT Customer.name, city

 FROM Customer join Loan using (name) // join ~ using (join attr.)

The list and city of customers who have a loan account at the ‘kwangan’ branch?

SELECT Customer.name, city

 FROM Customer, Loan

 WHERE Customer.name = Loan.name and branch=’kwangan’

A list of customers who have a loan account at the ‘kwangan’ branch, city and balance of

deposit?

SELECT Customer.name, city

 FROM Customer, Loan

 WHERE Customer.name = Loan.name and Customer.name = Deposit.name and

branch=’kwangan’

A list of customers who have both accounts in the ’kwangan’ branch?

⇒ INTERSECT

SELECT Loan.name

 FROM Loan JOIN Deposit USING (name) /* Natural Join */

 WHERE Loan.branch = 'kwangan'

124 Chapter 05 –SQL

(c.f.) SELECT Deposit.name

 FROM Loan JOIN Deposit USING (name)

 WHERE Deposit.branch = 'kwangan'

(c.f.) SELECT Deposit.name

 FROM FROM Loan JOIN Deposit USING (name, branch)

 WHERE Deposit.branch = 'kwangan'

Arithmetic Expression

 SELECT account

 FROM Deposit

 WHERE balance BETWEEN 200 AND 300

 (⇔ WHERE balance >= 200 AND balance <= 300)

 SELECT account

 FROM Deposit

 WHERE balance NOT BETWEEN 200 AND 300

String match

Any substring: % Oracle * Informix % MySQL

Any character: - ? _ (underbar)

 SELECT name

 FROM customer

 WHERE address LIKE ‘%kwang%‘

 SELECT name

 FROM customer

 WHERE address NOT LIKE ‘%kwang%‘

escape character: ‘percent: \%‘

Chapter 05 –SQL 125

Set Membership (∈)

⇒ INTERSECT

 SELECT DISTINCT name

 FROM Loan

 WHERE branch=‘kwangan‘ and

 name IN (SELECT name

 FROM Deposit

 WHERE branch=‘kwangan‘)

 ⇔ SELECT DISTINCT name

 FROM Loan

 WHERE branch=‘kwangan‘ AND

 (branch, name) IN (SELECT branch, name

 FROM Deposit)

Set comparison

Which branch has greater assets than the branches in ‘Pusan’?

Which branch has greater assets than all branches in ‘Pusan’?

SELECT branch

 FROM Branch

 WHERE city != ‘Pusan‘ and /* <> */

 asset 〉SOME (SELECT asset

 FROM branch

 WHERE city=‘Pusan‘)

SELECT branch

 FROM Branch

 WHERE city != ‘Pusan‘ and /* <> */

 asset 〉ALL (SELECT asset

 FROM branch

126 Chapter 05 –SQL

 WHERE city=‘Pusan‘)

Testing for empty relations.

 EXISTS → True : if the subquery is non empty.

 → False : 〃 empty.

 A list of customers who have both deposit and loan accounts in the ‘kwangan’ branch?

 ① Set operation: INTERSECT

 ② Join

 ③ Set membership: IN

 ④ EXISTS

SELECT name

 FROM Customer

 WHERE EXISTS (SELECT * FROM Deposit

 WHERE Deposit.name=Customer.name and

 branch=‘kwangan‘)

 AND EXISTS (SELECT * FROM Loan

 WHERE Loan.name=Customer.name and

 branch=‘kwangan‘)

Tuple variables: Rename (ρ)

 Tuple variables are defined in the FROM clause.

 ⇒ Tuple variables are most useful for comparing two tuples in the same relation.

The name of the customer who has a savings account at the same branch as 'YS'?

SELECT DISTINCT T.name

 FROM Deposit S, Deposit T

 WHERE S.name =‘YS‘ and

 S.branch = T.branch AND

 T.name != ‘YS‘

Chapter 05 –SQL 127

⇔ SELECT DISTINCT name

 FROM Deposit

 WHERE S.name =‘YS‘ and

 branch IN (SELECT branch FROM Deposit

 WHERE name = ‘YS‘)

Ordering the tuples

SELECT name

 FROM Deposit

 WHERE branch=‘kwangan‘

 ORDER BY name ASC /* DESC */

Aggregate functions

AVG, MIN, MAX, SUM, COUNT

SELECT COUNT(name) FROM Deposit

SELECT SUM(balance) FROM Deposit

SELECT branch, AVG(balance) FROM Loan

GROUP BY branch

CREATE VIEW View30000 AS

(SELECT branch, AVG(balance) AS ‘avg loan amount’,

SUM(balance) AS 'total loan amount'

 FROM Loan

 GROUP BY branch

 HAVING AVG(balance) >= 30000)

Outer join

⇒ Include (left/right/full) tuples not included in natural join

NATURAL LEFT OUTER JOIN

128 Chapter 05 –SQL

NATURAL RIGHT OUTER JOIN

NATURAL FULL OUTER JOIN

Referential integrity

 CREATE TABLE Employee

 (name char(10),

 branch char(10),

 FOREIGN KEY (branch) REFERENCES Branch);

INSERT INTO Employee VALUES ('An‘, ’kwangan‘);

INSERT INTO Employee VALUES ('Yu‘, ’onchun‘);

Domain integrity

/* CHECK (balance>=100) */

INSERT INTO Deposit

 VALUES (‘kwangan‘, 123, ‘DJ‘, 10)

Chapter 05 –SQL 129

 The most common command types in DDL are CREATE, ALTER and DROP. All

three types have a predefined syntax that must be followed for the command to run

and changes to take effect.

 DML is an abbreviation for Data Manipulation Language. Data Manipulation

Language or DML represents a collection of programming languages explicitly used

to make changes in the database, such as: CRUD operations to create, read, update,

and delete data. Using the INSERT, SELECT, UPDATE and Delete commands.

1. What is DDL: Data Definition Language command in SQL?

2. What is DML : Data Manipulation Language command in SQL

3. What are the difference between DDL: Data Definition Language and

DML: Data Manipulation Language in SQL.

Summary

Questions

130 Chapter 05 –SQL

1. Please write the correct SQL statement to create a new database called

rttcDB.

2. Please write the correct SQL statement to create table grade follow table

below:

Field Type Null Key Default

ID Integer(3) Yes Primary Key Null

khmer Integer(3) Yes Null

math Integer(3) Yes Null

science Var(3) Yes Null

- Please write the correct SQL statement to insert 3 students into table grade

follow table below:

ID khmer math science comment

111 90 95 85 outstanding

112 100 95 75 kind warm

113 70 90 80 need to study hard

3. Please write the correct SQL statement to create table student follow table

below:

Field Type Null Key Default

ID Integer(3) Yes Primary Key Null

name var(50) Yes Null

address var(50) Yes Null

Exercises

Chapter 05 –SQL 131

- Please write the correct SQL statement to insert 3 students into table student

follow table below:

ID name address

111 Chan dara Null

112 Uk bora Null

113 Sorn piseth Null

4. Please write the correct SQL statement update table grade set math=60

with Id 112

5. Please write the correct SQL statement select from grade by ordering from

large to small through math.

6. Please write the correct SQL statement select from grade by aggregate

Functions through khmer.

7. Please write the correct SQL statement select student name with the highest

khmer score.

8. Please write the correct SQL statement select the name of the lowest

student and show all the scores that get comment study hard.

9. Please write the correct SQL statement Joined Relations (Inner join, Left

outer join, Natural inner join, Natural full outer join) and show result?

Chapter 06

PHP

 In this chapter, you will learn:

6.1 WWW (World Wide Web)

6.2 Installing Web Server (httpd)

6.3 Installing PHP (Professional Hypertext Preprocessor)

6.4 Install My SQL

Objective

 To Understand World Wide Web

 To practice Web Server(httpd)

 To practice PHP (Professional Hypertext Preprocessor)

 To practice My SQL

Chapter 06 –PHP 135

6.1 WWW (World Wide Web)

• Introduction

- Wide-area information service and software that allows you to search all kinds of

information distributed on the Internet in a unified way

- Proposed by Tim Berners-Lee of the European Council for Nuclear Research

(CERN) in 1989.

- Stored and managed as a unit called Home Page in the form of Hypertext within the

Web Server

- Connected to Hypertext around the world geographically distributed on the Internet

by a function called Link.

• HTTP (HyperText Transfer Protocol)

- Standard protocol that defines how a web client and web server communicate and

how data information is transferred from the web server to the web client.

- Obtain data information of web server by entering URL (Uniform Resource Locator)

starting with http://

- TCP/IP is used for the correct transmission of data in the underlying

6.2 Installing Web Server (httpd)

Apache is the most commonly used Web server on Linux systems. Web servers are used to

serve Web pages requested by client computers. Clients typically request and view Web

pages using Web browser applications such as Firefox, Opera, Chromium, or Internet

Explorer.

• Installing Apache on Windows 10 64bit Environment

- Go to ‘https://www.apachelounge.com/download/’ and download it.

136 Chapter 06 –PHP

- Unzip the downloaded file.

- Move the Apache24 folder to the ‘C:\’. After moving, the final path will be

‘C:\Apache24’ path.

- Open the ‘httpd.conf’ file with notepad. Basically, find the part below and change the

settings to suit your installation PC. (Specifies the Server Root path. Since it was

specified as C:\Apache24 above, modify it accordingly.)

Chapter 06 –PHP 137

ServerRoot “c:\Apache24”

Note: Press Ctrl+F, and then type your search words

- Set the port of the web server. The default is 80. If you do not use a different port

number, leave it as is.

 Listen 80

- This is the path where the files of the website displayed when accessing the web server

with a web browser are saved. When connecting to http://localhost:80 (or http://localhost),

the index.html page in DocumentRoot is found and displayed.

 DocumentRoot “c:\Apache24/htdocs”

- Run the command prompt window in administrator mode. (If you want to uninstall

the installed Apache server, type httpd.exe -k uninstall command.)

C:\Apache25/bin

 Httpd.ext –k install

- Execute the file below in Window File Manager:

 C:\Apache24\bin\ApacheMonitor.exe

- Run ‘Apache Monitor’ by right-clicking the Apache icon on the taskbar at the bottom

right of the Window.

138 Chapter 06 –PHP

- Start and stop the server using the start and stop buttons in Apache Monitor.

- Launch a web browser and connect to ‘http://localhost’.

- The will produce the following Result:

6.3 Installing PHP (Professional Hypertext Preprocessor)

PHP (Hypertext Preprocessor) is known as a general-purpose scripting language that can

be used to develop dynamic and interactive websites. It was among the first server-side

languages that could be embedded into HTML, making it easier to add functionality to web

pages without needing to call external files for data.

• Introduction

- Server-side script: A technology that directly processes the files coded in the web

server by the application server operating on the server side and sends the results to the

browser

- You can configure the fastest website running on Windows, Unix, and Linux

operating systems.

- Since it is a language developed with an open source model, it is ported so that it can

be operated in various operating systems and web server environments.

- A very accessible web development language for small developers.

• Installing PHP and connecting to httpd

- Please download the appropriate version of PHP from the site below. You must select

‘Thread Safe’ rather than Non Thread Safe for it to work properly! (the VS16 version of

64bit Thread Safe)

windows.php.net/download/

Chapter 06 –PHP 139

- Change the name to php8 (php version name) and save it in the same folder as

Apache, and change ‘php.ini-development’ in the folder to ‘php.ini’.

- After that, open php.ini with notepad.

- Find extension_dir and change extension_dir = "C:\php8\ext",

extension=curl

extension=mysqli

extension=gettext

extension=mbstring

extension=openssl

extension=pdo_sqlite

- remove the semicolon ‘;’ in front of it to activate the module.

- Additionally, to set the time zone, search for [Date] and change ‘date.timezone’ as

follows.

[Date]

; Defines the default timezone used by the date functions

; http://php.net/date.timezone

date.timezone = Asia/Seoul

- Change the error reporting settings as follows.

error_reporting = E_ALL & ~E_NOTICE & ~E_DEPRECATED &

~E_USER_DEPRECATED

- After that, open ‘httpd.conf’ in conf in Apache24 folder with notepad and paste the

following part in the bottom line.

PHPIniDir "C:/php8"

LoadModule php_module "C:/php8/php8apache2_4.dll"

AddHandler application/x-httpd-php .php

AddType application/x-httpd-php .php .html

- Search for ‘IfModule dir_module’ and replace it as follows.

<IfModule dir_module>

 DirectoryIndex index.php index.html

</IfModule>

- Finally, create ‘phpinfo.php’ as below in ‘Apache24\htodcs’.

<?php

 phpinfo();

?>

140 Chapter 06 –PHP

- After that, type ‘localhost/phpinfo.php’ in the address bar and the screen of php

information will appear!

- The will produce the following Result:

Basic Programming

• php #1-1: Hello World

<?php

Echo "Hello World!! \n";

phpinfo();

 ?>

- The will produce the following Result:

• php #2-1: php, html, Javascript

<?php

Echo "Hello World. Today is".date("Y-m-d", time());

?>

<h3>How are you?</h3>

<script>

document.write("Hello World. Today is "+Date());

</script>

Chapter 06 –PHP 141

- The will produce the following Result:

• php #3-1: variables

/* This is a comment... */

$mycounter=1;

$mystring="Hello";

$myarray=array("one","two","three");

echo $mycounter."
";

echo $mystring;

echo "
";

echo $myarray[0];

echo "
";

$username="Kim Taeyoung";

echo $username;

echo "
";

$current_user=$username;

echo $current_user;

?>

- The will produce the following Result:

142 Chapter 06 –PHP

• php #3-2: types

<?php

/* automatic transformation... */

$number=123*678;

echo $number."
"

echo substr($number,3,2)."
";

$pi="3.141592";

$radius=5;

$area=$pi*($radius*$radius);

echo $area;

?>

- The will produce the following Result:

• php #3-3: function

<?php

/* function... */

$temp="The time is ";

echo $temp.longdate1(time());

function longdate1($timestamp){

 return date("H:i:m", $timestamp);

}

echo "

";

Chapter 06 –PHP 143

echo longdate2($temp,time());

function longdate2($text,$timestamp){

 return $text.date("H : i : m", $timestamp);

}

echo "

";

echo test()."->".test()."->"test();

function test(){

 static $count=0;

 $count++;

 return $count;

}

?>

- The will produce the following Result:

• php #4-1: repetition

<?php

/* This is a comment... */

$count=0;

while(++$count<=10)

 echo $count."
";

echo "--------
";

for($i=1, $j=1; $i+$j<=10; $i++, $j++)

echo $i."+".$j."
";

144 Chapter 06 –PHP

$fp=fopen("4-1.txt","wb");

for($j=0; $j<10; ++$j){

 $written=fwrite($fp, "data".$j."\n");

 if($written==FALSE) break;

}

fclose($fp);

?>

- The will produce the following Result:

6.4 Installing MySQL

MySQL is a tool used to manage databases and servers, so while it's not a database, it's

widely used in relation to managing and organising data in databases.

• Installing MySQL

https://dev.mysql.com/downloads/installer/

First of all, we need to download the installer.

When you try to start the download, the website will ask you to log in or create an

account, but you don’t have to do so. Note the No thanks, just start my download button.

Chapter 06 –PHP 145

When you open the installer, it will first configure the installation and then ask for the

user’s permission to proceed:

When this is over, we’ll finally see the installer interface. As you can see in the image

below, the process consists of four steps:

1. Choosing a setup type

2. Downloading the files

3. Installing the software

4. Finishing the installation

There are five types of setups available in this first step and you can check the side

box to see what each of them will install. However, we strongly recommend, especially if

you’re just getting started with SQL, to select the default option.

For select the default option: The default option is large. It requires a large computer

to use to install Mysql to run properly and avoid crashes during use.

The most important features, among others, this setup will install are:

 MySQL Server: the database server itself

 MySQL Workbench: an application to manage the server

 MySQL for Visual Studio: this feature enables the users to use MySQL from Visual

Studio

146 Chapter 06 –PHP

 The documentation and tutorials

It’s also ok to choose the full setup as this will install all MySQL resources available.

But if your computer is medium or under we should choose the Custom and select

the products you would like to install on your computer.
After you choose the setup option, click on Next.

If we select Custom please do the following:

1. Choose the setup: MySQL Server 8.0.31 – X64

 Click on the + MySQL servers

 Click on the + MySQL Server

 Click on the + MySQL Server 8.0

 Select MySQL Server 8.0.31 – X64 and press the right arrow

2. Choose the setup: MySQL Workbench 8.0.31 – X64

 Click on the + Application

 Click on the + MySQL Workbench

Chapter 06 –PHP 147

 Click one the + MySQL Workbench 8.0

 Select MySQL Workbench 8.0.31 – X64 and press the right arrow

3. Choose the setup: MySQL Shell 8.0.31 – X64

 Click on the + Application

 Click on the + MySQL Shell

 Click on the + MySQL Shell 8.0

 Select MySQL Shell 8.0.31 – X64 and press the right arrow

Click on Next

Requirements

At this point, there’s a chance you’ll be asked to install some required software, the most

common being the Visual Code. The installer can automatically solve some requirement

issues, however, this is not the case here:

- Click on Execute

- √ I agree to the licences terms and conditions

- Click on Install

- Setup Successful (Click on Close)

148 Chapter 06 –PHP

Click on Next

Download & Install

You have now reached the download section. The section name is self-explanatory: you’ll

download all the components in the setup option you selected.

Click on Execute and the download will start. This might take a few minutes to be

concluded. When it’s done, you should see tick marks on every item. Then you can

proceed.

The next screen you’ll see is almost the same as the last one, but now it will install all the

components you’ve just downloaded. This step will take significantly longer than the

previous one. When it’s over, you’ll see all the ticks marks again:

Chapter 06 –PHP 149

Click on Execute

Configuration

The next step is to configure the server. You’ll see the following screen. Hit Next.

First, the installer will ask you to configure the network:

It’s important to keep Development Computer in the Config Type field as you’re probably

installing this on your personal computer and not on a dedicated machine. You can choose

the port, but the default will work just fine. Click Next. For the authentication method, let’s

stick with the recommended option and click Next:

150 Chapter 06 –PHP

Now it’s time to create the root account. You’ll be asked to set a password. Remember to

use a strong one.

On this same screen, you can create other users and set their passwords and permissions.

You just have to click on Add User and fill in the blanks. Then, click Next.

Now you can choose the Windows service details, such as the service name, account type,

and if you want to start MySQL when you turn on your computer. Again, the default

options will work in most cases:

Click on Next

Chapter 06 –PHP 151

Click on Next

The next screen applies the configuration. Execute it. This step also takes a while to be

concluded.

After it ends, just finish the process.

152 Chapter 06 –PHP

Click on Next

This screen is followed by another one asking to apply the configuration. Just execute it

and click Finish.

We have finally reached the last screen.

Creating your first Database using MySQL Workbench

If you chose to start the Workbench after finishing the installation, you’ll see the following

screen:

Chapter 06 –PHP 153

Choose the connection to the server you created and log into it.

- Input your password

- Click on OK

This is your working space:

Notice in the SCHEMAS window that you already have a few sample databases to play

with. In the Information window, you can see the database you have selected. Of course,

you have the main window to write SQL code.

- Run the command prompt window in administrator mode. (If you want show database

by command.)

- Go to find path of MySQL Server 8.0bin

C:\Program Files\MySQL Server 8.0bin

154 Chapter 06 –PHP

- cd C:\Program Files\MySQL Server 8.0bin

- mysql –u root –p

- password :………..

- mysql : show database;

- Setup New connections

Right click on MySQL root and chose Delete Connection

Click on Delete

Click on MySQL Connections

Chapter 06 –PHP 155

- Connection Name: MySQL

- Hostname: localhost

- Click on Store in Vault…

- Password: input your password – Click on OK

- Click on Test Connection – Click on OK

• DB #1: PHP Connect to MySQL

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to connect

to the server:

1. Start Apache

2. Start MySQL server

3. Create new file name: Mysqlconn.php and save in C:\Apache24\htdocs

<?php

$host = 'localhost';

$user = 'root';

$pw = '';

$dbName = '';

$conn = new mysqli($host, $user, $pw, $dbName);

//Check SQL Command

if($conn){

 echo "MySQL connection OK";

}else{

 echo "MySQL connection failed";

}

?>

156 Chapter 06 –PHP

- The will produce the following Result:

• DB #2: PHP Create a MySQL Database

A database consists of one or more tables.

You will need special CREATE privileges to create or to delete a MySQL database.

$sql = "CREATE DATABASE jspbook";

//Check SQL Command

$sql = "CREATE DATABASE jspbook";

if ($conn->query($sql) === TRUE) {

 echo "Database created successfully";

} else {

 echo "Error creating database: " . $conn->error;

}

$conn->close();

- The will produce the following Result:

• DB #3: PHP MySQL Create Table

A database table has its own unique name and consists of columns and rows.

<?php

$host = 'localhost';

$user = 'root';

$pw = '';

Chapter 06 –PHP 157

$dbName = 'jspbook';

$conn = new mysqli($host, $user, $pw, $dbName);

//Check SQL Command

if($conn){

 echo "MySQL connect OK";

}else{

 echo "MySQL connection failed";

}

// sql to create table

$sql = "CREATE TABLE MyGuests (

 id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

 firstname VARCHAR(30) NOT NULL,

 lastname VARCHAR(30) NOT NULL,

 email VARCHAR(50),

 reg_date TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP

)";

 if ($conn->query($sql) === TRUE) {

 echo "Table MyGuests created successfully";

 } else {

 echo "Error creating table: " . $conn->error;

 }

 $conn->close();

?>

- The will produce the following Result:

158 Chapter 06 –PHP

• DB #4: PHP MySQL Insert Data

After a database and a table have been created, we can start adding data in them.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Chan', 'Dara', 'chandara168@gmail.com')";

if ($conn->query($sql) === TRUE) {

 echo "New record created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

- The will produce the following Result:

• DB #5: PHP MySQL Get Last ID

Get ID of The Last Inserted Record

If we perform an INSERT or UPDATE on a table with an AUTO_INCREMENT field, we

can get the ID of the last inserted/updated record immediately.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Lay', 'Sokchea', 'laysokchea@yahoo.com')";

if ($conn->query($sql) === TRUE) {

 $last_id = $conn->insert_id;

 echo "New record created successfully. Last inserted ID is: " . $last_id;

} else {

Chapter 06 –PHP 159

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

- The will produce the following Result:

• DB #6: PHP MySQL Insert Multiple Records

Insert Multiple Records Into MySQL Using MySQLi

Multiple SQL statements must be executed with the mysqli_multi_query() function.

$sql = "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Kim', 'Sok', 'kimsok.gmail.com');";

$sql .= "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Sok', 'Chea', 'sokchea168@gmail.com');";

$sql .= "INSERT INTO MyGuests (firstname, lastname, email)

VALUES ('Toy', 'Kompheak', 'toykompheak168@yahoo.com')";

if ($conn->multi_query($sql) === TRUE) {

 echo "New records created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

160 Chapter 06 –PHP

- The will produce the following Result:

• DB #7: PHP MySQL Select Data

Select Data From a MySQL Database

$sql = "SELECT id, firstname, lastname, email FROM MyGuests";

$result = $conn->query($sql);

if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo "id: " . $row["id"]. " - Name: " . $row["firstname"]. " " .

$row["lastname"]. "
";

 }

} else {

 echo "0 results";

}

$conn->close();

- The will produce the following Result:

Chapter 06 –PHP 161

• DB #8: PHP MySQL Use The WHERE Clause

Select and Filter Data From a MySQL Database

The WHERE clause is used to filter records.

The WHERE clause is used to extract only those records that fulfill a specified condition.

$sql = "SELECT id, firstname, lastname FROM MyGuests WHERE

lastname='Sokchea'";

$result = $conn->query($sql);

if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo "id: " . $row["id"]. " - Name: " . $row["firstname"]. " " .

$row["lastname"]. "
";

 }

} else {

 echo "0 results";

}

$conn->close();

- The will produce the following Result:

• DB #9: PHP MySQL Use The ORDER BY Clause

The ORDER BY clause is used to sort the result-set in ascending or descending order.

The ORDER BY clause sorts the records in ascending order by default. To sort the records

in descending order, use the DESC keyword.

$sql = "SELECT id, firstname, lastname FROM MyGuests ORDER BY

lastname";

$result = $conn->query($sql);

162 Chapter 06 –PHP

if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo "id: " . $row["id"]. " - Name: " . $row["firstname"]. " " .

$row["lastname"]. "
";

 }

} else {

 echo "0 results";

}

$conn->close();

- The will produce the following Result:

• DB #10: PHP MySQL Delete Data

The DELETE statement is used to delete records from a table:

$sql = "DELETE FROM MyGuests WHERE id=3";

if ($conn->query($sql) === TRUE) {

 echo "Record deleted successfully";

} else {

 echo "Error deleting record: " . $conn->error;

}

$conn->close();

Chapter 06 –PHP 163

- The will produce the following Result:

• DB #11: PHP MySQL Update Data

The UPDATE statement is used to update existing records in a table:

$sql = "UPDATE MyGuests SET lastname='Rithy' WHERE id=2";

if ($conn->query($sql) === TRUE) {

 echo "Record updated successfully";

} else {

 echo "Error updating record: " . $conn->error;

}

$conn->close();

- The will produce the following Result:

164 Chapter 06 –PHP

 Apache is the most commonly used Web server on Linux systems. Web servers are

used to serve Web pages requested by client computers. Clients typically request and

view Web pages using Web browser applications such as Firefox, Opera, Chromium,

or Internet Explorer.

 PHP (Hypertext Preprocessor) is known as a general-purpose scripting language

that can be used to develop dynamic and interactive websites. It was among the first

server-side languages that could be embedded into HTML, making it easier to add

functionality to web pages without needing to call external files for data.

 MySQL is a tool used to manage databases and servers, so while it's not a

database, it's widely used in relation to managing and organising data in databases.

1. Why we need install Apache server?

2. What does it mean to install PHP?

3. What is MySQL How to you Install?

4. How can connect to MySQL database in PHP?

Summary

Questions

Chapter 06 –PHP 165

1. Please write code connect to MySQL database called rttcDB in PHP.

2. Please write code create database called rttcDB in PHP.

3. Please write code to create table grade in PHP follow table below:

Field Type Null Key Default

ID Integer(3) Yes Primary Key Null

khmer Integer(3) Yes Null

math Integer(3) Yes Null

science Var(3) Yes Null

4. Please write code to insert 3 students into table grade in PHP follow table

below:

ID khmer math science comment

111 90 95 85 outstanding

112 100 95 75 kind warm

113 70 90 80 need to study hard

5. Please write code update table grade set math=60 with Id 112 in PHP.

6. Please write code select all from table grade in PHP.

Exercises

Chapter 07

Data and Process

In this chapter, you will learn:

 7.1. File

 7.2. CSV File Import

 7.3. Datasets

 7.4. Data Table

 7.5. Select Columns

 7.6. Select Rows

 7.7. Impute

 7.8. Outliers

 7.9. Pre-process

Data is digitalized and stored with various facts, making it the most important material to

understand and solve problems. Various data analysis tools can be used to improve students'

computing thinking skills, and this chapter uses a tool called Orange 3. Chapter 7 data and

processing learn various ways to load data as a basic step to analyze data using Orange 3. In

addition, to check the data in detail, it is expressed in a table form and columns and rows can be

selected and utilized according to conditions. Finally, to analyze the data, learn how to preprocess

it into the most suitable form and deal with the data yourself.

 Chapter 07 –Data and Processing 169

7.1. File

Reads attribute-value data from an input file.

7.1.1. Output

• Data: dataset from file.

The File widget reads the input data file (data table with data instances) and sends the

dataset to its output channel. The history of the most recently opened files is maintained in

the widget. The widget also includes a directory with sample datasets that come pre-

installed with Orange.

The widget reads data from Excel (.xlsx), simple tab-delimited (.txt), comma-separated

files (.csv) or URLs. For other formats see the Other Formats section below.

1. Browse through previously opened data files, or load any of the sample ones.

2. Browse for a data file.

3. Reloads the currently selected data file.

4. Insert data from URL addresses, including data from Google Sheets.

5. Information on the loaded dataset: dataset size, number, and types of data features.

Figure 7.1 File

170 Chapter 07 –Data and Processing

6. Additional information on the features in the dataset. Features can be edited by

double-clicking on them. The user can change the attribute names, select the type

of variable per each attribute (Continuous, Nominal, String, Datetime), and choose

how to further define the attributes (as Features, Targets or Meta). The user can also

decide to ignore an attribute.

7. Browse documentation datasets.

8. Produce a report.

 Example:

Most Orange workflows would probably start with the File widget. In the schema below,

the widget is used to read the data that is sent to both the Data Table and the Box Plot

widget.

7.1.2. Loading your data

1. Orange can import any comma, .xlsx, or tab-delimited data file or URL. Use the File

widget and then, if needed, select class and meta attributes.

2. To specify the domain and the type of the attribute, attribute names can be preceded by

a label followed by a hash. Use c for class and m for meta attribute, I to ignore a column,

and C, D, S for continuous, discrete and string attribute types. Examples: C#mpg,

mS#name, i#dummy.

3. Orange’s native format is a tab-delimited text file with three header rows. The first row

contains attribute names, the second the type (continuous, discrete or string), and the

third the optional element (class, meta or time).

Figure 7.2 File Link to Data and Box plot Table

 Chapter 07 –Data and Processing 171

 Read more on loading your data here.

7.1.3. Other Formats

Supported formats and the widgets to load them:

• distance matrix: Distance File

• predictive model: Load Model

• network: Network File from Network add-on

• images: Import Images from the Image Analytics add-on

• text/corpus: Corpus or Import Documents from Text add-on

• single-cell data: Load Data from Single Cell add-on

• several spectroscopy files: Multifile from Spectroscopy add-on

7.2. CSV File Import

 Import a data table from CSV formatted file.

7.2.1. Output

• Data: dataset from the .csv file

• Data Frame: pandas DataFrame object

Figure 7.3 Sample Format Text File

172 Chapter 07 –Data and Processing

The CSV File Import widget reads comma-separated files and sends the dataset to its output

channel. File separators can be commas, semicolons, spaces, tabs, or manually-defined

delimiters. The history of the most recently opened files is maintained in the widget.

Data Frame output can be used in the Python Script widget by connecting it to the in-object

input (e.g. df = in object). Then it can be used as a regular DataFrame.

7.2.2. Import Options

The import window is where the user sets the import parameters. Can be re-opened by

pressing Import Options in the widget.

Right-click on the column name to set the column type. Right-click on the row index (on

the left) to mark a row as a header, skipped or a normal data row.

1. File encoding. The default is UTF-8. See the Encoding subchapter for details.

2. Import settings:

• Cell delimiter:

− Tab

− Comma

− Semicolon

Figure 7.4 CSV File Import

 Chapter 07 –Data and Processing 173

− Space

− Other (set the delimiter in the field to the right)

• Quote character: either “ or ‘. Defines what is considered a text.

• Number separators:

− Grouping: delimiters for thousands, e.g. 1,000

− Decimal: delimiters for decimals, e.g. 1.234

3. Column type: select the column in the preview and set its type. Column type can be set

also by right-clicking on the selected column.

• Auto: Orange will automatically try to determine column type. (default)

• Numeric: for continuous data types, e.g. (1.23, 1.32, 1.42, 1.32)

• Categorical: for discrete data types, e.g. (brown, green, blue)

• Text: for string data types, e.g. (John, Olivia, Mike, Jane)

• Datetime: for time variables, e.g. (1970-01-01)

• Ignore: do not output the column.

4. Pressing Reset will return the settings to the previously set state (saved by pressing OK

in the Import Options dialogue). Restore Defaults will set the settings to their default

values. Cancel aborts the import, while OK imports the data and saves the settings.

7.2.3. Widget

The widget once the data is successfully imported.

1. The folder icon opens the dialogue for importing the local .csv file. It can be used to

either load the first file or change the existing file (load new data). The File dropdown

stores paths to previously loaded data sets.

2. Information on the imported data set. Reports on the number of instances (rows),

variables (features or columns), and meta-variables (special columns).

174 Chapter 07 –Data and Processing

3. Import Options re-opens the import dialogue where the user can set delimiters,

encodings, text fields, and so on. Cancel aborts data import. Reload imports the file

once again, adding to the data any changes made in the original file.

7.2.4. Encoding

The dialogue for settings custom encodings list in the Import Options - Encoding dropdown.

Select Customize Encodings List. . . to change which encodings appear in the list. To save

the changes, simply close the dialogue. Closing and reopening Orange (even with Reset

widget settings) will not reset the list. To do this, press Restore Defaults. To have all the

available encodings in the list, press Select all.

Example:

CSV File Import works almost exactly like the File widget, with the added options for

importing different types of .csv files. In this workflow, the widget read the data from the

file and sends it to the Data Table for inspection.

Figure 7.5 Customize Encoding List

 Chapter 07 –Data and Processing 175

7.3. Datasets

 Load a dataset from online repository.

7.3.1. Output

• Data: output dataset

The datasets widget retrieves the selected dataset from the server and sends it to the output.

The file is downloaded to the local memory and thus instantly available even without an

internet connection. Each dataset is provided with a description and formation on the data

size, number of instances, number of variables, target, and tags.

 Figure 7.6 Dataset File

176 Chapter 07 –Data and Processing

1. Information on the number of datasets available and the number of them downloaded

to the local memory.

2. Content of available datasets. Each dataset is described with the size, the number of

instances and variables, the type of the target variable, and tags.

3. Formal description of the selected dataset.

4. If Send Data Automatically is ticked, the selected dataset is communicated

automatically. Alternatively, press Send Data.

Example:

Orange workflows can start with Datasets widget instead of the File widget. In the

example below, the widget retrieves a dataset from an online repository (Kickstarter data),

which is subsequently sent to both the Data Table and the Distributions.

7.4. Data Table

 Displays attribute value data in a spreadsheet in table form.

 Chapter 07 –Data and Processing 177

7.4.1. Input

• Data: input dataset

7.4.2.Output

• Selected Data: instances selected from the table

The Data Table widget receives one or more datasets in its input and presents them as a

spreadsheet. Data instances may be sorted by attribute values. The widget also supports

manual selection of data instances.

1. The name of the dataset (usually the input data file). Data instances are in rows and

their attribute values in columns. In this example, the dataset is sorted by the attribute

“sepal length”.

2. Info on current dataset size and number and types of attributes

3. Values of continuous attributes can be visualized with bars; colors can be attributed to

different classes.

4. Data instances (rows) can be selected and sent to the widget’s output channel.

5. Use the Restore Original Order button to reorder data instances after attribute-based

sorting.

Figure 7.7 Data Table File

178 Chapter 07 –Data and Processing

6. Produce a report.

7. While auto-send is on, all changes will be automatically communicated to other widgets.

Otherwise, press Send Selected Rows.

 Example:

We used two File widgets to read the Iris and Glass dataset (provided in the Orange

distribution) and send them to the Data Table widget.

Selected data instances in the first Data Table are passed to the second Data Table. Notice

that we can select which dataset to view (iris or glass). Changing from one dataset to

another alters the communicated selection of data instances if Commit on any change is

selected.

 Chapter 07 –Data and Processing 179

7.5. Select Columns

 Manual selection of data attributes and composition of the data domain.

7.5.1. Input

• Data: input dataset

7.5.2. Outputs

• Data: dataset with columns as set in the widget.

The Select Columns widget is used to manually compose your data domain. The user can

decide which attributes will be used and how. Orange distinguishes between ordinary

attributes, (optional) class attributes, and meta-attributes. For instance, for building a

classification model, the domain would be composed of a set of attributes and a discrete

class attribute. Meta attributes are not used in modelling, but several widgets can use them

as instance labels.

Orange attributes have a type and are either discrete, continuous or a character string. The

attribute type is marked with a symbol appearing before the name of the attribute (D, C, S,

respectively).

Figure 7.8 Select Columns

180 Chapter 07 –Data and Processing

1. Left-out data attributes that will not be in the output data file

2. Data attributes in the new data file

3. Target variable. If none, the new dataset will be without a target variable.

4. Meta attributes of the new data file. These attributes are included in the dataset but are,

for most methods, not considered in the analysis.

5. Produce a report.

6. Reset the domain composition to that of the input data file.

7. Tick if you wish to auto-apply changes of the data domain.

8. Apply changes of the data domain and send the new data file to the output channel of

the widget.

 Example:

In the workflow below, the Iris data from the File widget is fed into the Select Columns

widget, where we select to output only two attributes (namely petal width and petal length).

We view both the original dataset and the dataset with selected columns in the Data Table

widget.

 Chapter 07 –Data and Processing 181

For a more complex use of the widget, we composed a workflow to redefine the

classification problem in the heart- disease dataset. Originally, the task was to predict if the

patient has a coronary artery diameter narrowing. We changed the problem to that of gender

classification, based on age, chest pain and cholesterol level, and informatively kept the

diameter narrowing as a meta attribute.

7.6. Select Rows

 Selects data instances based on conditions over data features.

7.6.1. Inputs

• Data: input dataset

7.6.1. Output

• Matching Data: instances that match the conditions

• Non-Matching Data: instances that do not match the conditions

• Data: data with an additional column showing whether a instance is selected

This widget selects a subset from an input dataset, based on user-defined conditions.

Instances that match the selection rule are placed in the output Matching Data channel.

Figure 7.9 Select Columns and Data Table File

182 Chapter 07 –Data and Processing

Criteria for data selection are presented as a collection of conjunct terms (i.e. selected items

are those matching all the terms in ‘Conditions’).

Condition terms are defined by selecting an attribute, selecting an operator from a list of

operators, and, if needed, defining the value to be used in the condition term. Operators are

different for discrete, continuous and string attributes.

1. Conditions you want to apply, their operators and related values

2. Add a new condition to the list of conditions.

3. Add all the possible variables at once.

4. Remove all the listed variables at once.

5. Information on the input dataset and information on instances that match the condition(s)

6. Purge the output data.

7. When the Send automatically box is ticked, all changes will be automatically

communicated to other widgets.

8. Produce a report.

Any change in the composition of the condition will update the information pane (Data

Out).

Figure 7.10 Select Rows

 Chapter 07 –Data and Processing 183

If Send automatically is selected, then the output is updated on any change in the

composition of the condition or any of its terms.

 Example:

In the workflow below, we used the Zoo data from the File widget and fed it into the Select

Rows widget. In the widget, we chose to output only two animal types, namely fish and

reptiles. We can inspect both the original dataset and the dataset with selected rows in the

Data Table widget.

In the next example, we used the data from the Titanic dataset and similarly fed it into the

Box Plot widget. We first observed the entire dataset based on survival. Then we selected

only first class passengers in the Select Rows widget and fed it again into the Box Plot.

There we could see all the first class passengers listed by their survival rate and grouped by

gender.

184 Chapter 07 –Data and Processing

7.7. Impute

 Replaces unknown (missing)values in the data.

7.7.1. Inputs

• Data: input dataset

• Learner: learning algorithm for imputation

7.7.2. Outputs

• Data: dataset with imputed values

Some of Orange’s algorithms and visualizations cannot handle unknown values in the data.

This widget does what statisticians call imputation: it substitutes missing values by values

either computed from the data or set by the user. The default imputation is (1-NN).

 Chapter 07 –Data and Processing 185

1. In the top-most box, Default method, the user can specify a general imputation

technique for all attributes.

• Don’t Impute does nothing with the missing values.

• Average/Most-frequent uses the average value (for continuous attributes) or the

most common value (for discrete attributes).

• As a distinct value creates new values to substitute the missing ones.

• Model-based imputer constructs a model for predicting the missing value, based

on values of other at- tributes; a separate model is constructed for each attribute.

The default model is 1-NN learner, which takes the value from the most similar

example (this is sometimes referred to as hot deck imputation). This al- gorithm can

be substituted by one that the user connects to the input signal Learner for

Imputation. Note, however, that if there are discrete and continuous attributes in the

data, the algorithm needs to be capable of handling them both; at the moment only

1-NN learner can do that. (In the future, when Orange has more regressors, the

Impute widget may have separate input signals for discrete and continuous models.)

• Random values compute the distributions of values for each attribute and then

impute by picking random values from them.

Figure 7.11 Impute File

186 Chapter 07 –Data and Processing

• Remove examples with missing values and removes the example containing

missing values. This check also applies to the class attribute if Impute class values

is checked.

2. It is possible to specify individual treatment for each attribute, which overrides the

default treatment set. One can also specify a manually defined value used for imputation.

In the screenshot, we decided not to impute the values of “normalized-losses” and

“make”, the missing values of “aspiration” will be replaced by random values, while

the missing values of “body-style” and “drive-wheels” are replaced by “hatchback” and

“fwd”, respectively. If the values of “length”, “width” or “height” are missing, the

example is discarded. Values of all other attributes use the default method set above

(model-based imputer, in our case).

3. The imputation methods for individual attributes are the same as default methods.

4. Restore All to Default resets the individual attribute treatments to default.

5. Produce a report.

6. All changes are committed immediately if Apply automatically is checked. Otherwise,

Apply needs to be ticked to apply any new settings.

 Example:

To demonstrate how the Impute widget works, we played around with the Iris dataset and

deleted some of the data. We used the Impute widget and selected the Model-based imputer

to impute the missing values. In another Data Table, we see how the question marks turned

into distinct values (“Iris-setosa, “Iris-versicolor”).

 Chapter 07 –Data and Processing 187

7.8. Outliers

 The outlier detection widget is used to classify the dataset.

7.8.1. Inputs

• Data: input dataset

7.8.2. Outputs

• Outliers: instances scored as outliers

• Inliers: instances not scored as outliers

• Data: input dataset appended Outlier variable

The Outliers widget applies one of the four methods for outlier detection. All methods apply

classification to the dataset. One-class SVM with non-linear kernels (RBF) performs well

with non-Gaussian distributions, while the co-variance estimator works only for data with

Gaussian distribution. One efficient way to perform outlier detection on moderately high

dimensional datasets is to use the Local Outlier Factor algorithm. The algorithm computes

a score reflecting the degree of abnormality of the observations. It measures the local

density deviation of a given data point with respect to its neighbours. Another efficient way

188 Chapter 07 –Data and Processing

of performing outlier detection in high-dimensional datasets is to use random forests

(Isolation Forest).

1. Method for outlier detection:

• One Class SVM

• Covariance Estimator

• Local Outlier Factor

• Isolation Forest

2. Set parameters for the method:

• One class SVM with the non-linear kernel (RBF): classifies data as similar or

different from the core class:

− Nu is a parameter for the upper bound on the fraction of training errors and a

lower bound of the fraction of support vectors

− Kernel coefficient is a gamma parameter, which specifies how much influence

a single data instance has

• Covariance estimator: fits ellipsis to central points with Mahalanobis distance

metric:

− Contamination is the proportion of outliers in the dataset

− Support fraction specifies the proportion of points included in the estimate

• Local Outlier Factor: obtains local density from the k-nearest neighbours:

− Contamination is the proportion of outliers in the dataset

− Neighbours represent number of neighbours

Figure 7.12 Outliers

 Chapter 07 –Data and Processing 189

− Metric is the distance measure

• Isolation Forest: isolates observations by randomly selecting a feature and then

randomly selecting a split value between the maximum and minimum values of the

selected feature:

− Contamination is the proportion of outliers in the dataset

− Replicable training fixes random seed

3. If Apply automatically is ticked, changes will be propagated automatically.

Alternatively, click Apply.

4. Produce a report.

5. Number of instances on the input, followed by a number of instances scored as inliers.

 Example:

Below is an example of how to use this widget. We used a subset (versicolor and virginica

instances) of the Iris dataset to detect the outliers. We chose the Local Outlier Factor

method, with Euclidean distance. Then we observed the annotated instances in the Scatter

Plot widget. In the next step we used the setosa instances to demonstrate novelty detection

using Apply Domain widget. After concatenating both outputs we examined the outliers in

the Scatter Plot (1).

190 Chapter 07 –Data and Processing

7.9. Pre-process

Pre-process data with selected methods and offers several preprocessing methods that can

be combined in a single preprocessing pipeline.

7.9.1. Inputs

• Data: input dataset

7.9.2. Outputs

• Pre-processor: pre-processing method

• Pre-processed Data: data pre-processed with selected methods

Pre-processing is crucial for achieving better-quality analysis results. The Pre-process

widget offers several pre-processing methods that can be combined into a single pre-

processing pipeline. Some methods are available as separate widgets, which offer advanced

techniques and greater parameter tuning.

 Chapter 07 –Data and Processing 191

1. List of pre-processors. Double click the pre-processors you wish to use and shuÆe their

order by dragging them up or down. You can also add pre-processors by dragging them

from the left menu to the right.

2. Pre-processing pipeline.

3. When the box is ticked (Send Automatically), the widget will communicate changes

automatically. Alternatively, click Send.

7.9.3. Pre-processors

Figure 7.13 Impute Missing Values Preprocess

Figure 7.14 Select Random Features Preprocess

192 Chapter 07 –Data and Processing

1. List of pre-processors.

2. Discretization of continuous values:

• Entropy-MDL discretization by Fayyad and Irani that uses expected information to

determine bins.

• Equal frequency discretization splits by frequency (same number of instances in

each bin.

• Equal width discretization creates bins of equal width (span of each bin is the same).

• Remove numeric features altogether.

3. Continuation of discrete values:

• Most frequent as base treats the most frequent discrete value as 0 and others as 1.

The discrete attributes with more than 2 values, the most frequent will be considered

as a base and contrasted with the remaining values in corresponding columns.

• One feature per value creates columns for each value, place 1 where an instance has

that value and 0 where it doesn’t. Essentially One Hot Encoding.

• Remove non-binary features retain only categorical features that have values of

either 0 or 1 and transform them into continuous.

• Remove categorical features and removes categorical features altogether.

• Treat as ordinal takes discrete values and treats them as numbers. If discrete values

are categories, each category will be assigned a number as they appear in the data.

• Divide by number of values is similar to treat as ordinal, but the final values will be

divided by the total number of values and hence the range of the new continuous

variable will be [0, 1].

4. Impute missing values:

• Average/Most frequent replaces missing values (NaN) with the average (for

continuous) or most frequent (for discrete) value.

• Replace with random value replaces missing values with random ones within the

range of each variable.

• Remove rows with missing values.

 Chapter 07 –Data and Processing 193

5. Select relevant features:

• Similar to Rank, this pre-processor outputs only the most informative features. A

score can be determined by information gain, gain ratio, gini index, ReliefF, fast

correlation-based filter, ANOVA, Chi2, RReliefF, and Univariate Linear

Regression.

• Strategy refers to how many variables should be on the output. Fixed returns a fixed

number of top scored variables, while Percentile return the selected top percent of

the features.

6. Select random features outputs either a fixed number of features from the original data

or a percentage. This is mainly used for advanced testing and educational purposes.

1. Normalize adjusts values to a common scale. Center values by mean or median or omit

centering altogether. Similar for scaling, one can scale by SD (standard deviation), by

span, or not at all.

2. Randomize instances. Randomized classes shuÆes class values and destroys the

connection between instances and class. Similarly, one can randomize features or

Figure 7.15 CUR Matrix Decomposition

194 Chapter 07 –Data and Processing

metadata. If replicable shuÆing is on, randomization results can be shared and repeated

with a saved workflow. This is mainly used for advanced testing and educational

purposes.

3. Remove sparse features retain features that have more than a number/percentage of

non-zero/missing values. The rest are discarded.

4. Principal component analysis outputs results of a PCA transformation. Similar to the

PCA widget.

5. CUR matrix decomposition is a dimensionality reduction method, similar to SVD.

7.9.4. Pre-processing for predictive modelling

When building predictive models, one has to be careful about how to do pre-processing.

There are two possible ways to do it in Orange, each slightly different:

1. Connect Pre-process to the learner. This will override the default pre-processing

pipeline for the learner and apply only custom pre-processing pipeline (default pre-

processing steps are described in each learner’s documentation).

2. Connect Pre-process to Test and Score. This will apply the pre-processors to each batch

within cross-validation. Then the learner’s pre-processors will be applied to the pre-

processed subset.

Finally, there’s a wrong way to do it. Connecting Pre-process directly to the original data

and outputting pre-processed data set will likely overfit the model. Don’t do it.

 Chapter 07 –Data and Processing 195

 Example:

In the first example, we have used the heart_disease.tab dataset available in the dropdown

menu of the File widget. then we used Pre-process to impute missing values and normalize

features. We can observe the changes in the Data Table and compare it to the non-processed

data.

In the second example, we show how to use Preprocess for predictive modeling.

This time we are using the heart_disease.tab data from the File widget. You can access the

data in the dropdown menu. This is a dataset with 303 patients that came to the doctor

suffering from chest pain. After the tests were done, some patients were found to have

diameter narrowing and others did not (this is our class variable).

Some values are missing in our data set, so we would like to impute missing values before

evaluating the model. We do this by passing a preprocessor directly to Test and Score. In

Preprocess, we set the correct preprocessing pipeline (in our example only a single

196 Chapter 07 –Data and Processing

preprocessor with Impute missing values), then connect it to the Preprocessor input of Test

and Score.

We also pass the data and the learner (in this case, a Logistic Regression). This is the correct

way to pass a preprocessor to cross-validation as each fold will independently get

preprocessed in the training phase. This is particularly important for feature selection.

 Chapter 07 –Data and Processing 197

1. Orange 3 is a tool that can analyze data simply without coding.

2. File and CSV File Import widgets can be used to retrieve and utilize files stored on

the computer.

3. The Datasets widget can be used to retrieve and utilize various example data used

for data analysis learning.

4. Data Table is a widget that converts data into a table form and shows it in detail.

5. Select Columns, Select Rows widgets allow you to select columns and rows

according to specific conditions.

6. The Input widget can be used to fill in missing values (missing data) that may occur

in the data.

7. The Outliers widget can be used to locate and exclude outliers (data outside of

statistical scope).

8. Pre-process widget can be preprocessed in the desired form through various

preprocessing functions such as data conversion and data modification.

Summary

1. What is the file extension in the form of storing data separated by commas?

2. What expression method has columns and rows and can accurately determine

the exact value of the data?

3. What do rows and columns of data mean in the data expressed in table form?

4. Give 3 examples of how to fill in missing values of data.

Questions

198 Chapter 07 –Data and Processing

1. Use Google Links (bit.ly/o3knue) to upload ice cream sales data to Orange 3.

2. Express and interpret the ice cream sales data in table form.

3. Fill in the missing values from the ice cream sales data.

Exercises

Chapter 08

Data visualization

 In this chapter, you will learn:

8.1 Box Plot

8.2 Violin Plot

8.3 Distribution

8.4 Heat Map

8.5 Scatter Plot

8.6 Line Plot

8.7 Bar Plot

8.8 Vann Diagram

8.9 Linear Projection

In this chapter, you will learn about various ways to visualize your data. The larger the number of

data, the more difficult it is to interpret it as a representation in the form of a table, and the more

difficult it is to interpret the detailed interpretation of relationship between the data.

The advantage of representing data in charts, tables, and plots is that you can easily see and

interpret data trends and features at a glance.

Chapter 08 –Data visualization 201

8.1. Box Plot

Shows the distribution of attribute values.

8.1.1. Inputs

• Data: input dataset

8.2.2. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

The Box Plot widget shows the distributions of attribute values. It is a good practice to

check any new data with this widget to quickly discover any anomalies, such as duplicated

values (e.g., gray and grey), outliers, and alike. Bars can be selected - for example, values

for categorical data or the quantile range for numeric data.

1. Select the variable you want to plot. Tick Order by relevance to subgroups to order

variables by Chi2 or ANOVA over the selected subgroup.

2. Choose Subgroups to see box plots displayed by a discrete subgroup. Tick Order by

relevance to variable to order subgroups by Chi2 or ANOVA over the selected variable.

3. When instances are grouped by a subgroup, you can change the display mode.

Annotated boxes will display the end values, the mean and the median, while comparing

Figure 8.1 Box Plot

v

202 Chapter 08 –Data visualization

medians and compare means will, naturally, compare the selected values between

subgroups.

4. The mean (the dark blue vertical line). The thin blue line represents the standard

deviation.

5. Values of the first (25%) and the third (75%) quantile. The blue highlighted area

represents the values between the first and the third quartile.

6. The median (yellow vertical line).

For discrete attributes, the bars represent the number of instances with each particular

attribute value. The plot shows the number of different animal types in the Zoo dataset:

there are 41 mammals, 13 fish, 20 birds, and so on.

Display shows:

• Stretch bars: Shows relative values (proportions) of data instances. The unticked box

shows absolute values.

• Show box labels: Display discrete values above each bar.

• Sort by subgroup frequencies: Sort subgroups by their descending frequency.

Chapter 08 –Data visualization 203

 Examples:

The Box Plot widget is most commonly used immediately after the File widget to observe

the statistical properties of a dataset. In the first example, we used heart-disease data to

inspect our variables.

Box Plot is also useful for finding the properties of a specific dataset, for instance, a set

of instances manually defined in another widget (e.g. Scatter Plot or instances belonging to

some cluster or a classification tree node. Let us now use zoo data and create a typical

clustering workflow with Distances and Hierarchical Clustering.

Now define the threshold for cluster selection (click on the ruler at the top). Connect

Box Plot to Hierarchical Clustering, tick Order by relevance, and select Cluster as a

subgroup. This will order attributes by how well they define the selected subgroup, in our

case, a cluster. It seems like our clusters indeed correspond very well with the animal type!

Figure 8.2 V a r i a b l e

v

204 Chapter 08 –Data visualization

8.2. Violin Plot

Visualize the distribution of feature values in a violin plot.

8.2.1. Inputs

• Data: input dataset

8.2.2. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

The Violin Plot widget plays a similar role as a Box Plot. It shows the distribution of

quantitative data across several levels of a categorical variable such that those

distributions can be compared. Unlike the Box Plot, in which all of the plot components

correspond to actual data points, the Violin Plot features a kernel density estimation of

the underlying distribution.

Figure 8.3 Hierarchical Clustering

v

Chapter 08 –Data visualization 205

1. Select the variable you want to plot. Tick Order by relevance to subgroups to order

variables by Chi2 or ANOVA over the selected subgroup.

2. Choose Subgroups to see violin plots displayed by a discrete subgroup. Tick Order

by relevance to variable to order subgroups by Chi2 or ANOVA over the selected

variable.

3. Box plot: Tick to show the underlying box plot.

− Strip plot: Tick to show the underlying data

represented by points.

− Rug plot: Tick to show the underlying data

represented by lines.

− Order subgroups: Tick to order violins by median (ascending).

− Orientation: Determine violin orientation.

4. Kernel: Select the kernel used to estimate the density. Possible kernels are: Normal,

Epanechnikov and Linear.

Scale: Select the method used to scale the width of each violin. If area is selected, each

violin will have the same area. If count is selected, the width of the violins will be scaled

by the number of observations in that bin. If width is selected, each violin will have the

same width.

Figure 8.4 V i o l i n P l o t

v

206 Chapter 08 –Data visualization

Example:

The Violin Plot widget is most commonly used immediately after the File widget to observe

the statistical properties of a dataset. In the first example, we have used heart-disease data

to inspect our variables.

The Violin Plot could also be used for outlier detection. In the next example, we

eliminate the outliers by selecting only instances that fall inside the Q1 1.5 and Q3 + 1.5

IQR.

Figure 8.5 Violin Plot by Display Strip Plot

v

Chapter 08 –Data visualization 207

8.3. Distribution

Displays value distributions for a single attribute.

8.3.1. Inputs

• Data: input dataset

8.3.1. Outputs

− Selected Data: instances selected from the plot

− Data: data with an additional column showing whether an instance is selected

− Histogram Data: bins and instance counts from the histogram

The Distributions widget displays the value distribution of discrete or continuous

attributes. If the data contains a class variable, distributions may be conditioned on the

class.

 The graph shows how many times (e.g., in how many instances) each attribute value

appears in the data. If the data contains a class variable, class distributions for each of

the attribute values will be displayed (like in the snapshot below). To create this graph,

we used the Zoo dataset.

Figure 8.6 Distributions

v

208 Chapter 08 –Data visualization

1. A list of variables for display. Sort categories by frequency orders displayed values

by frequency.

2. Set Bin width with the slider. Precision scale is set to sensible intervals. Fitted

distribution fits the selected distribution to the plot. Options are Normal, Beta,

Gamma, Rayleigh, Pareto, Exponential, Kernel density.

3. Columns:

• Split by displays value distributions for instances of a certain class.

• Stack columns displays one column per bin, colored by proportions of class

values.

• Show probabilities shows probabilities of class values at selected variable.

• Show cumulative distribution cumulatively stacks frequencies.

If Apply Automatically is ticked, changes are communicated automatically.

Alternatively, click Apply.

For continuous attributes, the attribute values are also displayed as a histogram. It is

possible to fit various distributions to the data, for example, a Gaussian kernel density

estimation. Hide bars hides histogram bars and shows only distribution (old behaviour

of Distributions).

For this example, we used the Iris dataset.

In classless domains, the bars are displayed in blue. We used the Housing dataset.

Figure 8.7 Distributions by Sepal Length

v

Chapter 08 –Data visualization 209

8.4. Heat Map

Plots a heat map for a pair of attributes and is a graphical method for visualizing attribute

values in a two-way matrix.

8.4.1 Inputs

• Data: input dataset

8.4.2. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

Heat map is a graphical method for visualizing attribute values in a two-way matrix. It

only works on datasets containing numeric variables. The values are represented by

color according to the selected color palette. By combining class variables and attributes

on the x and y axes, we see where the attribute values are the strongest and where the

weakest, thus enabling us to find typical features for each class.

 The widget enables row selection with click and drag. One can zoom in with Ctrl++

(Cmd++) and zoom out with Ctrl+- (Cmd+-). Ctrl+0 (Cmd+0) resets zoom to the

extended version, while Ctrl+9 (Cmd+9) reset it to the default.

Figure 8.8 Distributions by MEDV

v

210 Chapter 08 –Data visualization

1. The color palette. Choose from linear, diverging, color-blind-friendly, or other

palettes. Low and High are thresholds for the color palette (low for attributes with

low values and high for attributes with high values). Selecting one of the diverging

palettes, which have two extreme colors and a neutral (black or white) color at the

midpoint, enables an option to set a meaningful mid-point value (default is 0).

2. Merge rows. If there are too many rows in the visualization, one can merge them

with k-means algorithm into N-selected clusters (default 50).

3. Cluster columns and rows:

• None (lists attributes and rows as found in the dataset)

• Clustering (clusters data by similarity with hierarchical clustering on Euclidean

distances and with average linkage)

• Clustering with ordered leaves (same as clustering, but it additionally

maximizes the sum of similarities of adjacent elements)

4. Split rows or columns by a categorical variable. If the data contains a class variable,

rows will be automatically split by class.

5. Set what is displayed in the plot in Annotation & Legend.

• If the show legend is ticked, a color chart will be displayed above the map.

Figure 8.9 Heat Map

v

Chapter 08 –Data visualization 211

• If Stripes with averages is ticked, a new line with attribute averages will be

displayed on the left. Row An- notations add annotations to each instance on

the right. Color colors the instances with the corresponding value of the selected

categorical variable. Column Annotations adds an annotation to each variable

at the selected position (default is Top). Color colors the columns with the

corresponding value of the selected column annotation.

6. The If the keep aspect ratio is ticked, each value will be displayed with a square

(proportionate to the map).

7. If Send Automatically is ticked, changes are communicated automatically.

Alternatively, click Send.

8.4.3 Advanced visualization

Heat map enables some neat plot enhancements. Such options are clustering of rows

and/or columns for better data organization, row, and column annotations, and splitting

the data by categorical variables.

 Row and column clustering is performed independently. Row clustering is

computed from Euclidean distances, while column clustering uses Pearson correlation

coefficients. Hierarchical clustering is based on the Ward linkage method. Clustering

with optimal leaf ordering reorders left and right branches in the dendrogram to

minimize the sum of distances between adjacent leaves (Bar-Joseph et al. 2001).

Figure 8.10 A d v a n c e d Heat Map

v

212 Chapter 08 –Data visualization

8.4.4. Gene expressions

The Heat Map below displays attribute values for the brown-selected data set (Brown

et al. 2000). Heat maps are particularly appropriate for showing gene expressions and

the brown-selected data set contains yeast gene expressions at different conditions.

 Heat map shows low expressions in blue and high expressions in yellow and white.

For better organization, we added Clustering (opt. ordering) to the columns, which puts

columns with similar profiles closer together. In this way, we can see the conditions

that result in low expressions for ribosomal genes in the lower right corner.

Additionally, the plot is enhanced with row color on the right, showing which class the

rows belong to.

8.4.5. Sentiment Analysis

Heat maps are great for visualizing any kind of comparable numeric variables, for

example, sentiment in a collection of documents. We will take the book-excerpts corpus

from the Corpus widget and pass it to the Sentiment Analysis widget, which computes

sentiment scores for each document. The output of sentiment analysis is four columns,

Figure 8.11 A d v a n c e d Heat Map by Gene expression

v

Chapter 08 –Data visualization 213

positive, negative, and neutral sentiment score, and a compound score that aggregates

the previous scores into a single number. Positive compound values (white) represent

positive documents, while a negative (blue) represent negative documents.

 We used row clustering to place similar rows closer together, resulting in clear

negative and positive groups. Now we can select negative children’s books and explore

which are they.

8.4.6. References

Bar-Joseph, Z., Gifford, D.K., Jaakkola, T.S. (2001) Fast optimal leaf ordering for

hierarchical clustering, Bioinformat- ics, 17, 22-29.

Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey, T.S., Ares, M.,

Haussler, D. (2000) Knowledge- based analysis of microarray gene expression data by

using support vector machines, Proceedings of the National Academy of Sciences, 1,

262-267.

Figure 8.12 A d v a n c e d Heat Map by Sentiment Analysis

v

214 Chapter 08 –Data visualization

8.5. Scatter Plot

Scatter plot visualization with exploratory analysis and intelligent data visualization

enhancements.

8.5.1 Inputs

• Data: input dataset

• Data Subset: subset of instances

• Features: list of attributes

8.5.2. Outputs

• Selected Data: instances selected from the plot

The Scatter Plot widget provides a 2-dimensional scatter plot visualization. The data is

displayed as a collection of points, each having the value of the x-axis attribute

determining the position on the horizontal axis and the value of the y-axis attribute

determining the position on the vertical axis. Various properties of the graph, like color,

size and shape of the points, axis titles, maximum point size, and jittering can be

adjusted on the left side of the widget. A snapshot below shows the scatter plot of the

Iris dataset with the coloring matching of the class attribute.

Figure 8.13 S c a t t e r P l o t

v

Chapter 08 –Data visualization 215

1. Select the x and y attribute. Optimize your projection with Find Informative

Projections. This feature scores attribute pairs by average classification accuracy

and returns the top-scoring pair with a simultaneous visualization update.

2. Attributes: Set the color of the displayed points (you will get colors for categorical

values and blue-green-yellow points for numeric). Set label, shape, and size to

differentiate between points. Label-only selected points to allow you to select

individual data instances and label only those.

3. Set symbol size and opacity for all data points. Set jittering to prevent the dots from

overlapping. Jittering will randomly scatter points only around categorical values.

If Jitter numeric values are checked, points are also scattered around their actual

numeric values.

• Show color regions colors the graph by class (see the screenshot below).

• Show legend displays a legend on the right. Click and drag the legend to move

it.

• Show gridlines display the grid behind the plot.

• Show all data on mouse hover enabling information bubbles if the cursor is

placed on a dot.

• Show regression line draws the regression line for pair of numeric attributes. If

a categorical variable is selected for coloring the plot, individual regression lines

for each class value will be displayed. The reported r value corresponds to the

value from linear least-squares regression, which is equal to Pearson’s

correlation coefficient.

• Treat variables as independent fits regression line to a group of points (minimize

the distance from points), rather than fitting y as a function of x (minimize

vertical distances)

4. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The

manual selection of data instances works as an angular/square selection tool.

Double-click to move the projection. Scroll in or out for zoom.

5. If Send automatically is ticked, changes are communicated automatically.

Alternatively, press Send.

Here is an example of the Scatter Plot widget if the Show color regions and Show regression

line boxes are ticked.

216 Chapter 08 –Data visualization

8.5.3. Intelligent Data Visualization

If a dataset has many attributes, it is impossible to manually scan through all the pairs

to find interesting or useful scatter plots. Orange implements intelligent data

visualization with the Find Informative Projections option in the widget.

If a categorical variable is selected in the Color section, the score is computed as follows.

For each data instance, the method finds 10 nearest neighbors in the projected 2D space,

that is, on the combination of attribute pairs. It then checks how many of them have the

same color. The total score of the projection is then the average number of same-colored

neighbors.

 The computation for numeric colors is similar, except that the coefficient of

determination is used for measuring the local homogeneity of the projection.

To use this method, go to the Find Informative Projections option in the widget, open

the sub-window, and press Start Evaluation. The feature will return a list of attribute

pairs by average classification accuracy score.

 Below, there is an example demonstrating the utility of ranking. The first scatter

plot projection was set as the default sepal width to sepal length plot (we used the Iris

dataset for simplicity). Upon running Find Informative Projections optimization, the

scatter plot converted to a much better projection of petal width to petal length plot.

Chapter 08 –Data visualization 217

8.5.4. Selection

Selection can be used to manually defined subgroups in the data. Use Shift modifier

when selecting data instances to put them into a new group. Shift + Ctrl (or Shift + Cmd

on macOs) appends instances to the last group.

Signal data outputs a data table with an additional column that contains group indices.

 Figure 8.15 S e l e c t i o n

v

Figure 8.14 Intelligent Data Visualization

v

218 Chapter 08 –Data visualization

8.5.6. Exploratory Data Analysis

The Scatter Plot, like the rest of the Orange widgets, supports zooming in and out of

part of the plot and a manual selection of data instances. These functions are available

in the lower-left corner of the widget.

The default tool is Select, which selects data instances within the chosen rectangular

area. Pan enables you to move the scatter plot around the pane. With Zoom, you can

zoom in and out of the pane with a mouse scroll, while Reset zoom resets the

visualization to its optimal size. An example of a simple schema, where we selected

data instances from a rectangular region and sent them to the Data Table widget, is

shown below. Notice that the scatter plot doesn’t show all 52 data instances, because

some data instances overlap (they have the same values for both attributes used).

 Example:

The Scatter Plot can be combined with any widget that outputs a list of selected data

instances. In the example below, we combine Tree and Scatter Plot to display instances

taken from a chosen decision tree node (clicking on any node of the tree will send a set of

selected data instances to the scatter plot and mark selected instances with filled symbols).

Figure 8.16 E x p l o r a t o r y D a t a A n a l y s i s

v

Chapter 08 –Data visualization 219

8.5.7. References

Gregor Leban and Blaz Zupan and Gaj Vidmar and Ivan Bratko (2006) VizRank: Data

Visualization Guided by Ma- chine Learning. Data Mining and Knowledge Discovery,

13 (2). pp. 119-136. Available here.

8.6. Line Plot

It is a visualization of data profiles. A line Plot is a type of plot which displays the data as

a series of points, connected by straight line segments.

8.6.1. Inputs

• Data: input dataset

• Data Subset: the subset of instances

8.6.1. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

220 Chapter 08 –Data visualization

Line plot is a type of plot which displays the data as a series of points, connected by

straight line segments. It only works for numerical data, while categorical can be used

for grouping of the data points.

1. Information on the input data.

2. Select what you wish to display:

• Lines show individual data instances in a plot.

• Range shows the range of data points between the 10th and 90th percentile.

• Mean adds the line for mean value. If a group by is selected, means will be

displayed per each group value.

• Error bars show the standard deviation of each attribute.

3. Select a categorical attribute to use for grouping data instances. Use None to show

ungrouped data.

4. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The

manual selection of data instances works as a line selection, meaning the data under

the selected line plots will be sent on the output. Scroll in or out for zoom. When

hovering over an individual axis, scrolling will zoom only by the hovered-on axis

(vertical or horizontal zoom).

5. If Send Automatically is ticked, changes are communicated automatically.

Alternatively, click Send.

Figure 8.17 L i n e P l o t

v

Chapter 08 –Data visualization 221

Example:

Line Plot is a standard visualization widget, which displays data profiles, normally of

ordered numerical data. In this simple example, we will display the iris data in a line plot,

grouped by the iris attribute. The plot shows how petal length nicely separates between

class values.

If we observe this in a Scatter Plot, we can confirm this is indeed so. Petal length is an

interesting attribute for separation of classes, especially when enhanced with petal width,

which is also nicely separated in the line plot.

8.7. Bar Plot

Visualizes comparisons among discrete categories.

8.7.1. Inputs

• Data: input dataset

• Data Subset: the subset of instances

8.7.2. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

222 Chapter 08 –Data visualization

The Bar Plot widget visualizes numeric variables and compares them by a categorical

variable. The widget is useful for observing outliers, distributions within groups, and

comparing categories.

1. Parameters of the plot. Values are the numeric variable to plot. Group by is the

variable for grouping the data. Annotations are categorical labels below the plot.

Color is the categorical variable whose values are used for colouring the bars.

2. Select, zoom, pan and zoom to fit are the options for exploring the graph. The

manual selection of data instances works as an angular/square selection tool.

Double click to move the projection. Scroll in or out for zoom.

3. If Send automatically is ticked, changes are communicated automatically.

Alternatively, press Send.

4. Access help, save image, produce a report, or adjust visual settings. On the right,

the information on input and output are shown.

 Example:

The Bar Plot widget is most commonly used immediately after the File widget to compare

categorical values. In this example, we have used heart-disease data to inspect our variables.

Figure 8.18 B a r P l o t

v

Chapter 08 –Data visualization 223

First, we observed the cholesterol values of patients from our data set. We grouped

them by diameter narrowing, which defines patients with heart disease (1) and those

without (0). We use the same variable for colouring the bars.

Then, we selected patients over 60 years of age with Select Rows. We sent the subset

to Bar Plot to highlight these patients in the widget. The big outlier with a high

cholesterol level is apparently over 60 years old.

8.8. Venn Diagram

Plots a Venn diagram for two or more data subsets.

8.8.1. Input

• Data: input dataset

8.8.2. Output

• Selected Data: instances selected from the plot

• Data: entire data with a column indicating whether an instance was selected or not

The Venn Diagram widget displays logical relations between datasets by showing the

number of common data in- stances (rows) or the number of shared features (columns).

Selecting a part of the visualization outputs the corresponding instances or features.

224 Chapter 08 –Data visualization

1. Select whether to count common features or instances.

2. Select whether to include duplicates or to output only unique rows; applicable only

when matching instances by values of variables.

3. Rows can be matched

• by their identity, e.g. rows from different data sets match if they came from the

same row in a file,

• by equality, if all tables contain the same variables,

• or by values of a string variable that appears in all tables.

Example:

The easiest way to use the Venn Diagram is to select data subsets and find matching

instances in the visualization. We use the breast-cancer dataset to select two subsets with

Select Rows widget - the first subset is that of breast cancer patients aged between 40 and

49 and the second is that of patients with a tumor-size between 20 and 29. The Venn

Diagram helps us find instances that correspond to both criteria, which can be found in the

intersection of the two circles.

Figure 8.19 V e n n P l o t

v

Chapter 08 –Data visualization 225

The Venn Diagram widget can be also used for exploring different prediction models. In

the following example, we analysed 3 prediction methods, namely Naive Bayes, SVM and

Random Forest, according to their misclassified instances.

By selecting misclassifications in the three Confusion Matrix widgets and sending them to

Venn diagram, we can see all the misclassification instances visualized per method used.

Then we open Venn Diagram and select, for example, the misclassified instances that were

identified by all three methods. This is represented as an intersection of all three circles.

Click on the intersection to see these two instances marked in the Scatter Plot widget. Try

selecting different diagram sections to see how the scatter plot visualization changes.

226 Chapter 08 –Data visualization

8.9. Linear Projection

A linear projection method with explorative data analysis.

8.9.1. Inputs

• Data: input dataset

• Data Subset: subset of instances

• Projection: custom projection vectors

8.9.2. Outputs

• Selected Data: instances selected from the plot

• Data: data with an additional column showing whether a point is selected

• Components: projection vectors

This widget displays linear projections of class-labeled data. It supports various types

of projections such as circular, linear discriminant analysis, and principal component

analysis.

Consider, for a start, a projection of the Iris dataset shown below. Notice that it is the

sepal width and sepal length that already separate Iris setosa from the other two, while

the petal length is the attribute best separating Iris versicolor from Iris virginica.

Figure 8.20 L i n e a r P r o j e c t i o n

v

Chapter 08 –Data visualization 227

1. Axes in the projection that are displayed and other available axes. Optimize your

projection by using Suggest Features. This feature scores attributes and returns the

top scoring attributes with a simultaneous visualiza- tion update. Feature scoring

computes the classification accuracy (for classification) or MSE (regression) of k-

nearest neighbors classifier on the projected, two-dimensional data. The score

reflects how well the classes in the projection are separated.

2. Choose the type of projection:

• Circular Placement

• Linear Discriminant Analysis

• Principal Component Analysis

3. Set the color of the displayed points. Set shape, size, and label to differentiate

between points. Label only selected points labels only selected data instances.

4. Adjust plot properties:

• Symbol size: set the size of the points.

• Opacity: set the transparency of the points.

• Jittering: Randomly disperse points with jittering to prevent them from

overlapping.

• Hide radius: Axes inside the radius are hidden. Drag the slider to change the

radius.

5. Additional plot properties:

• Show color regions colors the graph by class.

• Show legend displays a legend on the right. Click and drag the legend to move

it.

6. Select, zoom, pan, and zoom to fit are the options for exploring the graph. The

manual selection of data instances works as an angular/square selection tool.

Double-click to move the projection. Scroll in or out for zoom.

7. If Send automatically is ticked, changes are communicated automatically.

Alternatively, press Send.

Example:

The Linear Projection widget works just like other visualization widgets. Below, we

connected it to the File widget to see the set projected on a 2-D plane. Then we selected the

228 Chapter 08 –Data visualization

data for further analysis and connected it to the Data Table widget to see the details of the

selected subset.

8.9.3. References

Koren Y., Carmel L. (2003). Visualization of labeled data using linear transformations.

In Proceedings of IEEE Information Visualization 2003, (InfoVis’03). Available here.

Boulesteix A.-L., Strimmer K. (2006). Partial least squares: a versatile tool for the

analysis of high-dimensional ge- nomic data. Briefings in Bioinformatics, 8(1), 32-44.

Abstract here.

Leban G., Zupan B., Vidmar G., Bratko I. (2006). VizRank: Data Visualization Guided

by Machine Learning. Data Mining and Knowledge Discovery, 13, 119-136. Available

here.

Chapter 08 –Data visualization 229

1. The larger the size of the data (although the number of columns and rows)

makes it difficult to interpret and handle the data.

2. Data visualization refers to ways to represent data in different ways, such as

pictures, charts, and so on.

3. Box plots can be based on the data's representative values (Q1, Q2, median,

maximum, minimum, mean, standard deviation) and their distribution.

4. Violin plots can determine the distribution based on the value of the data.

Depending on the characteristics, you can compare at a glance how much data

is located in which data interval.

5. Distribution can tell the distribution of data based on each characteristic.

6. Heatmap expresses the relationship between each data in color, making it easy

to understand at a glance.

7. Scatter plots are often used to express the correlation of data. Because it is

represented in a plane based on two characteristics, it is easy to interpret the

relationship between the two data.

8. Line plots are often used to compare changes in data in time series data. You

can view and interpret the flow of data that changes over time or specific criteria.

9. Bar plot can be used to compare the size of the interval or discrete values of

the data. Although it can be utilized similarly to line plots, line plots are mainly

used to determine continuous value changes, and bar plots are used to compare

discrete values.

Summary

1. Explain why you need data visualization

2. What are the representative values that can be found in the box plot?

3. Which plot is most appropriate to determine the correlation between data

characteristics?

4. What is the difference between a bar plot and a line plot? Which data is more

appropriate for each representation?

Questions

230 Chapter 08 –Data visualization

1. Load iris data from the Datasets widget and find out what the characteristics of

the data mean.

2. Express the number of data according to the flower variety in iris dataset as a

bar plot.

3. Check the representative value of the petal width using the box plot and explain

the characteristics of the data.

4. Analyse the correlation between the width and length of petals and the width

and length of sepal with a scatter plot, and interpret the relationship according to

the variety.

Exercises

	Chapter 01-Introduction
	Chapter 02-Relational Model
	Chapter 03-Relational Language-SQL
	Chapter 04-Entity-Relationship Model
	Chapter 05 SQL
	Chapter 06 PHP
	Chapter 7-Data and Process
	Chapter 8-Data visualization

