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ABSTRACT Over the past decades, numerous practical applications of machine learning techniques have
shown the potential of AI-driven and data-driven approaches in a large number of computing fields.
Machine learning is increasingly included in computing curricula in higher education, and a quickly growing
number of initiatives are expanding it in K–12 computing education, too. As machine learning enters
K–12 computing education, understanding how intuition and agency in the context of such systems is
developed becomes a key research area. But as schools and teachers are already struggling with integrating
traditional computational thinking and traditional artificial intelligence into school curricula, understanding
the challenges behind teaching machine learning in K–12 is an even more daunting challenge for computing
education research. Despite the central position of machine learning andAI in the field of modern computing,
the computing education research body of literature contains remarkably few studies of how people learn
to train, test, improve, and deploy machine learning systems. This is especially true of the K–12 curriculum
space. This article charts the emerging trajectories in educational practice, theory, and technology related
to teaching machine learning in K–12 education. The article situates the existing work in the context of
computing education in general, and describes some differences that K–12 computing educators should take
into account when facing this challenge. The article focuses on key aspects of the paradigm shift that will
be required in order to successfully integrate machine learning into the broader K–12 computing curricula.
A crucial step is abandoning the belief that rule-based ‘‘traditional’’ programming is a central aspect and
building block in developing next generation computational thinking.

INDEX TERMS Machine learning, artificial intelligence, K-12, school, computing education, computational
thinking, pedagogy.

I. INTRODUCTION
Computer-based automation of jobs has driven changes in the
labor markets since the stored-program computer revolution
started to gain momentum in the 1950s. The first jobs to dis-
appear were routine tasks of a symbolic or numerical nature
that were amenable to computing-based automation through
explicitly stated sets of rules. Examples are many, but some
notable ones are accounting, payroll, inventory, and schedul-
ing, for example [23]. Governments used computers for
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large-scale information processing needs, such as compiling
and tabulating national census data and welfare state record-
keeping [1]. Scientists gradually adopted the new technol-
ogy for tasks that involved large-scale computations, such
as X-ray crystallography and fluid dynamics [1], [2]. Ever-
increasing volumes of digitized data and increasing process-
ing power drove the rise of scientific computing, culminating
during the 1980s in computational sciences movements in
multiple fields and the emergence of e-science on national
political agendas [12].

Pioneering educators quickly recognized the changes in
the labor market. They expressed very early the need to
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educate everyone about the new technology that they saw
was bound to change work and society [25]. Guzdial [31]
wrote that throughout the years, advocates of computing
and programming education in K–12 have provided many
rationales for their work. Proponents argued that knowing
the principles of computing was important to understand-
ing the algorithm-driven virtual and physical worlds one
inhabits. In addition, familiarity with these concepts enables
people to use computers better and to ask questions about
the powerful influence of algorithms on their lives. They
have also argued that computing provides a new medium for
expressing ideas and for studying and learning science, math-
ematics, problem-solving [65], and processes in general [31].
As computing pervades work life it becomes more impor-
tant, emerging in recent years as a central job skill and an
area closely connected with economic success and industrial
innovation [29].

The abstraction level in programming (or, more broadly,
in harnessing computations and computers to do jobs for
us) has steadily risen, with its cited benefits ranging from
improved business efficiency to bringing the power of com-
puting from hands of the few to the hands of many [18],
[26], [27], [51], [64]. After the 1950s, interfaces to com-
puting power have been rapidly moving further and further
away from the machine [28], and decade after decade new
educational interventions have aimed at capturing each era’s
dominant approaches to automation [96].

As the level of abstraction in computing education across
educational levels steadily arose, the credo among comput-
ing cognoscenti became that one needs to be familiar with
at least one abstraction level below that at which one is
working. In the 1950s it was said that computing personnel
benefit from knowledge of the underlying electronics [41].
Then it was said that knowledge of octal machine code
was beneficial for those who programmed in assembly lan-
guages [40]. Once a consensus had formed on the adoption
of higher-level languages such as Pascal, C, C++ and Java,
knowledge of assembly language was correspondingly iden-
tified as important. Knowledge of how to implement data
structures and algorithms is beneficial for users of highly
optimized class libraries. This article concerns another step in
this development, and it asks what role does an understanding
of high-level language ‘‘traditional’’ programming play in
the adoption of AI and ML computational toolboxes and
languages.

The scope and focus of computing education efforts have
always expanded and shifted to keep pace with techno-
logical change (cf. [31], [32], [96]). Since the birth of
modern computing, year by year educational interventions
expanded to involve ever younger and more diverse groups
of students; in the 1960s they reached first high schools
and then primary schools and kindergartens. In 1960 Alan
Perlis argued that soon everyone needs to learn programming
and ‘‘algorithmizing,’’ but lamented the lack of pedagogy
needed in order to effectively teach this [51]. The mid-
1960s brought DEC PDP-8 minicomputers to select US

high schools, the 1965 Little Man Computer initiative
taught machine languages to children, the children’s pro-
gramming language Logo saw daylight in 1967, and the
children’s portable computer Dynabook was introduced
in 1968 [14].

In the past ten years the computing landscape has seen
another major technological shift. Traditional programming
and rule-based ‘‘good old-fashioned artificial intelligence’’,
which have been the driving force of automation for the
past 70 years, have been joined by a variety of data-driven
machine learning techniques. The much-hyped ‘‘second
machine age’’ [9] is based on the ability of machine learn-
ing techniques to automate many tasks that traditional,
rule-based programming struggles with. In many applica-
tion areas it has turned out that for large classes of prob-
lems it is much easier to collect data sets large enough for
machine learning than to figure out the rules necessary for
a rule-based program [50]. Many popular examples of the
latest advances in automation are based on a combination
of neural networks and traditional programming: take, for
example, self-driving cars, face recognition [91], computer
based identification of tumors [20], and the game of Go,
where a computer was programmed to learn completely on its
own to achieve superhuman ability in the game [84]. Reports
of the recent, much feared, losses of jobs to automation in
the knowledge-work domain cite numerous examples where
job losses were principally not linked to traditional rule-based
program development, but rather to areas where the struc-
ture of the tasks have been amenable to the sophisticated
optimization and statistical techniques of modern machine
learning [11].

Just as previous developments in computing have triggered
changes in computing education, machine learning is now
acting as a catalyst for change throughout the education
system both in K–12 and higher education. The focus of
computing education has shifted before, new shifts will come
in the future, and it has been suggested that the next frontier in
computer science education research is how to teach artificial
intelligence [15], [82], [83].

Computing pioneers have foreseen a shift in higher
education computing curricula towards machine learning
principles [83]. What is more, the breakthrough of machine
learning has given rise to a growing number of initia-
tives for teaching some machine learning principles in
K–12 [60], [102]. A 2020 review identified 30 recent edu-
cational initiatives that focused on ML basics and neural
networks in K–12 education [60]. Some pioneering ones
include the Wolfram Alpha-based ‘‘Machine Learning for
Middle Schoolers’’,1 Google’s Teachable Machine,2 and the
IBM Watson-based ‘‘Machine Learning for Kids’’.3 Exam-
ples of research on bringing machine learning to children

1https://writings.stephenwolfram.com/2017/05/machine-learning-for-
middle-schoolers/

2https://teachablemachine.withgoogle.com/
3https://machinelearningforkids.co.uk/
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at different ages include combining block-based languages
and APIs with popular cloud-based machine learning sys-
tems [48], extending block-based environments with ML
blocks (using, e.g., Cognimates4 and eCraft2Learn5) [42],
[47], [93], [124], AI-enhanced children’s robotics kits (e.g.,
Calypso for Cozmo,6 AI-in-a-box7), and teaching the prin-
ciples of object recognition to high-school students [59]—
alongwith numerous others [60]. Public efforts are under way
by, for instance, the AI4K12 working group for teaching AI
through kindergarten, primary school, and high school [102].

While the K–12 machine learning initiatives are of many
kinds, most of them address one of the chief rationales for
computing education for everyone [31]: The importance of
understanding how one’s world works. They are aimed at
bridging the gulf between K–12 computing education and
children’s everyday experiences with technology. Without
understanding some ML principles, many apps and services
that children use appear like magic to them: Picture hosting
services know who the people in one’s photos are. Streaming
websites are able to recommend videos that the user will like,
even though he or she has never seen it before. Mobile phones
can be configured to unlock when they see their owner’s face,
and home assistants act on voice commands. Understanding
that all the above are smartly designed technology, which is in
no way intelligent in the same way humans are, is important
to demystifying these technologies [38], [42].

ML inK–12 initiatives also prepare students for citizenship
in a new media ecology driven by ubiquitous data collection,
profiling, and behaviour engineering [56], [66]. With suit-
able curricular and educational arrangements, learning the
principles of ML can provide an antidote to malicious data
collection, attempts to sway elections, and profiled adver-
tisement [106]. Understanding what ML can, and cannot,
do is an important enabler of active citizenship and underpins
the future prosperity of democratic societies [35]. Enabling
people to ask questions about the powerful influence of the
most famous, as well as the most notorious, algorithms on
their lives—those that enable tracking, profiling, modeling,
predicting, content tailoring, and behavior engineering, for
instance—requires a perspective different from that associ-
ated with traditional rule-based programming. Calls for edu-
cation that prepares students for the data-driven society in
which they live are becoming frequent [16], [69], [106].

But teachingML in K–12 differs in a number of ways from
the traditional approaches to teaching rule-based program-
ming, computational thinking, or computing. This article is
aimed at explaining why there is a growing belief that how
to teach ML is going to be the next frontier in computing
education research [15], [82], [83]. The article describes a
number of pedagogical and technical aspects of computing
education that ML learning interventions in K–12 have had

4https://cognimates.me/
5https://ecraft2learn.github.io/ai/
6https://calypso.software/
7https://www.readyai.org/readyai-you/ai-in-a-box/

to re-think, as well as their implications to educational prac-
tice. The article is aimed at K–12 computing educators who
are planning to expand their educational portfolio towards
ML-based technology. While ML in K–12 initiatives are not
all alike, many of them share a number of features identified
in this article, and understanding these approaches provides
an important basis for future educational innovation.

II. METHODOLOGY
Other reviews of machine learning in K–12 have found that
traditional systematic reviews on the topic are not well suited
for the task due to 1) the novelty of the topic, 2) the lack
of established terminology, and 3) broad variety of disci-
plinary approaches in existing peer reviewed literature on
AI education (e.g., [55], [123]). Those studies have found
that exploratory literature reviews fare much better in reach-
ing literature relevant to the topic than structured literature
reviews do [55], [123]. Similar to the earlier reviews, this
study too adopted the scoping studies framework, which aims
at rapidly mapping an emerging field, including, for instance,
its key concepts and their relationships, its key findings,
and its research gaps [6]. Scoping reviews are particularly
well suited for mapping a terminologically eclectic field like
ML education in K–12 because, unlike traditional systematic
reviews, the scoping review framework does not rely on a
fixed, pre-defined set of search terms for identifying relevant
research [6]. The weaknesses of scoping reviews include their
inability to appraise quality of identified research and quan-
titatively synthesize results (as compared to meta-reviews),
as well as their poorer replicability [6]. Instead, they are
able to provide a narrative account of available research and
summarize it [6].

In order to identify the literature on the topic, this study
began by conducting a set of searches in ACM Digital
Library, IEEExplore, Scopus, and Google Scholar, using sets
of keywords borrowed from [55] and [60]. From the result
sets—the size of which ranged from zero to 62.200—a max-
imum of 150 abstracts were scanned from each, identifying
research focused on ML at K–12 education. Second, in order
to extend the overview of the field, snowball sampling was
applied to the bibliography sections of the articles already
identified [117]. Third, in order to raise the analysis to a
higher level of abstraction, similar studies were clustered in
order to understand the groundings for the new emerging
research area. The results found 63 articles relevant to learn-
ing ML in K–12. The size of the resulting set differed from
the other reviews due to their different foci (33 instructional
units in [60], 150 AI-education related documents in [55],
and 49 K–12 AI education works in [123]). As the field is
still emerging and growing, and as its terminology is not yet
fixed, the set of documents captured may not be exhaustive.

From the identified 63 documents, education researchers
and computing researchers distilled their lists of key char-
acteristics of K–12 ML education (in contrast to tradi-
tional computing education), yielding an original working
list of 19 characteristics. Those key characteristics were

110560 VOLUME 9, 2021



M. Tedre et al.: Teaching Machine Learning in K–12 Classroom: Pedagogical and Technological Trajectories

discussed, sorted, and merged to a final list of 13 items
(Section IV). Each category was described through a number
of exemplars, key articles that best exemplified them.

III. MACHINE LEARNING EDUCATION IN K–12
Theory and practice of artificial intelligence (AI) have
belonged to the fundamentals of higher education in com-
puting since the birth of the AI field in 1956 [61], [75].
In higher education, much education on the theory of AI
today focuses on the mathematical foundations of algorithms
for building models that are able to generalize and predict
from unstructured data. And much education on AI practice
aims to harvest the power of these algorithms by focusing on
applying and using AI tools, models, and algorithms rather
than rigorously explaining the underlying structures of the
algorithms and the learning of the algorithms themselves.

In K–12 education, most AI-related initiatives have histori-
cally been concerned with 1) AI-based tools to support learn-
ing, 2) AI-based tools for studying learning processes, and
3) AI to support school administrative functions [39]. Adap-
tive learning environments, pedagogic agents, automated
governance, intelligent tutoring systems, andmany other sim-
ilar research programs have attempted to model elements of
the learning situation—such as the learner, pedagogy, subject
matter, context of learning, and learning objects—in ways
amenable to automation [5], [39], [116]. As technology and
educational paradigms have changed, so have views about the
merger between AI and education [5].

In addition to using AI in educational technology, over
the decades there has been an important undercurrent: (How)
can we teach children about how AI works? Since the 1970s
AI education initiatives in K–12 have followed each era’s
‘‘hot topics in AI’’ with examples spanning initiatives with
children programming robots to navigate in the world [67],
children working with NLP (natural language processing)
technology [46], children developing expert systems in the
classroom [112], [113], middle-school students teaching a
computer to play tic-tac-toe [24], [70], all the way to high
school students learning the fundamentals of neural net-
works [7]. LEGO Mindstorms has been a very popular plat-
form for robotics-based AI education in K–12 [68], and AI
initiatives in schools have very often been based on develop-
ing rule-based systems.

In higher education the symbolic, rule-based ‘‘classical’’
AI has been joined by data-driven branches of AI, today
most commonly machine learning (ML). Educational efforts
have followed suit [120]. Major computing publications
have outlined the impact of machine learning on the under-
graduate computing curriculum [82], [83]. For example,
Shapiro et al. [83] define the traditional view of the core of
computing as a collection of human-comprehensible, deter-
ministic algorithms that can be verified. They envision two
shifts away from this in the near future. They observe that
machine learning models are not human-readable algorithms
but opaque composites of millions of parameters. Secondly,
ML models are not amenable to verification efforts, however,

their effectiveness can be statistically established. They fur-
ther note that nearly all literature on computing education
research targets rule-driven programming, and consequently
call for a major shift in the focus of computing education
research to study how people learn and reason about ML
systems [82], [83].

Multiple modern programming languages now offer suites
to build and trainMLmodels without exposing the underlying
operations and the architecture of ML solutions. Languages
such as Python, R, and Matlab have been used in practical
and theoretical courses onML education in tertiary education.
The trend in ML education is towards increasingly sophisti-
cated tools for enabling practical hands on experiences for
students. The interest in deep learning algorithms in higher
education is no longer just about learning the equations of
back-propagation or ReLU, or how to implement them; but
about applying them as tools that can be used with lit-
tle knowledge of their internal structure and mechanisms.
Through easy-to-access APIs ML becomes a commodity
and agency has shifted from the hands of experts to the
hands of undergraduate and graduate students. What is more,
unplugged activities can be used to scaffold understanding of
the training processes used on data sets to produce classifiers
in a range of realistic settings [53].

Today, as ML-based applications have become a common
part of children’s everyday life, ranging from smart toys to
music streaming services, attention has turned to how to teach
some ML principles to children [102], [120]. In order to
render ML accessible and democratize the access to these
technologies the sophisticated underlying model, and details
of its internal implementation, have been buried under layers
of abstraction. Due to the complexity ofmanyML algorithms,
and due to the black box nature of ML’s predictive models,
theoretical and practical ML education use a broad spectrum
of tools to soften the learning curve for state-of-the-art ML
solutions. For instance, some projects have used various sets
of scripting and notation languages to scaffold the black
boxed parts of the predictive models [43], [44]. Other projects
have used mobile robots to introduce the concepts of artificial
neural networks (ANNs) and selectedML paradigms, such as
reinforcement learning [100], [101]. Many of these projects
use mobile robots in ML education to transform a theoretical
subject into a tangible, practical and explicit representation of
the predictive models.

However, like other branches of computational thinking,
one key challenge of ML in K–12 education is determining
what can be taught at different levels of education [14].
The phrase ‘‘K–12’’ covers a broad range of learners and
different age-appropriate learning objectives, spanning from
kindergarten children who focus on learning basic literacy
and numeracy to senior year high school students, many of
whom are working on mathematical modelling and advanced
problem solving skills in order to enter tertiary education. The
tools and pedagogical approaches appropriate to each age,
learning context, and educational objective are very different,
and the spectrum of challenges and aims of ML education
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initiatives reflect these great differences. ML education ini-
tiatives in K–12 are of extremely many kinds, and often
in addition to ML concepts and skills also involve learning
about fundamental principles of time and place, as well as
understanding and being able to manipulate materials, con-
structions (physical artefacts), as well as being able to place
such artefacts into a broader historical perspective.

A large number of initiatives have emerged in the context
of K–12 education to fill the need to teach middle-school
children some basic ML concepts. In addition to the above
mentionedMachine Learning for Middle Schoolers based on
Wolfram Programming Lab, Google’s Teachable Machine 2,
and the IBM Watson-based Machine Learning for Kids,
a number of other initiatives have approached ML education
in K–12 from different angles. Pre-K and kindergarten AI
curriculum has been approached using a social robot based on
Lego blocks, motors, sensors, and smartphones [114], [115].
Facial recognition and robotics has also been used to teach AI
concepts [38], and experiments have been made with gesture
recognition in order to study how children learn to understand
basic ML workflows [36]. Block language extensions have
been adopted to teach high school children concepts like
k-means clustering, neural networks [21], supervised learn-
ing [119], LSTM (long short-term memory) based language
models [108], and APIs that connect to commercial ML
systems [48]. There are examples of teaching the principles
of object recognition to high-school students through a sim-
plified ML system [59] and studies of children’s interactions
with different AI-based tools—Jibo robot, Anki’s Cozmo
robot, and Amazon’s Alexa Echo, and Cognimates (con-
versational agents)—to study how children’s understanding
of AI technology developed through interactions with smart
agents [15], [16].

A number of ML-related initiatives also focus on pedagog-
ical and curricular perspectives. Unified AI literacy curricula
from kindergarten to high school and university have been
developed [49] as well as separate curricula for different
school levels [10], [22], [76], [122]. One initiative presents
a 450-hour complete AI curriculum, including 100 hours
on machine learning [88]. Extensive packages of teaching
materials have been developed to help middle school students
to learn about ML [79]. One group presented five ‘‘big ideas
in AI’’ that children should learn: Perception through sensors,
reasoning about the world through models, learning from
examples, interacting with people, and societal impact of
AI [102]. Another group described the principles underly-
ing a constructionist AI curriculum for K–9, based on the
PopBots robot toolkit, AI ethics, and the Droodle creativity
game [3]. A recent study synthesizes AI-related literature to
form 17 competencies and 15 design considerations associ-
ated with a learner-centered AI curriculum [55].

Some recent ML education systems are very easy to adopt
for classroom use. Take, for instance, Google’s Teachable
Machine 2 (TM2) and MIT’s PIC [93]. Abandoning the
deductive reasoning and rule-based programming that drove
traditional programming language experiments in education,

using TM2 or PIC, children can engage in the process of
data-driven reasoning and design: providing themachinewith
a training data-set and then using the trained model to control
the machine [110]. With TM2, children can, for example,
examine external representations by having a computer learn
to recognize their voice, facial expression, or bodily ges-
tures [102]. These new tools and computational paradigms
can expand the action possibilities for children while also
offering them new ways to make sense of the world they
already live in. Understanding how ML models the world
can also empower children to understand and question ML
systems of their everyday life, such as those used in face
recognition, voice recognition, and other kinds of pattern
recognition [38], [126].

IV. WHAT CHARACTERIZES K–12 ML EDUCATION?
So-called ‘‘low-floor’’ tools [73] are increasingly democ-
ratizing and commodifying ML education, and enabling
teachers to adopt ML as a basic building block of their
computing classes. ML-based tools have become a common-
place element of the every-day user experience. Ever improv-
ing interfaces for training ML models have the potential
to shift end-user programming towards data-driven applica-
tions. In the past few years, a growing body of literature on
how to teach ML at different school levels provides concrete
indications of where elements of change in school education
are taking place. This section presents an overview of some
of those changes.

A. BROADER CLASSES OF EXAMPLE APPLICATIONS
BECOME ACCESSIBLE FOR DIFFERENT LEVELS OF
K–12 EDUCATION
Similar to how ML has enabled new approaches to automa-
tion of jobs in work life,ML is enabling new kinds of example
applications of computing in the school classroom. Take, for
instance, media applications, which have been a feature of
computing education for decades: There is a long history of
research on using sound, images, and movies as a vehicle for
learning computing [30]. As machine learning really shines
with media-related application areas—video, pictures, sen-
sors, and sound—it has no shortage of immediate, real-world
uses in K–12 education. Any phenomenon that allows easy
collection of a lot of data has good potential for learning
about ML-based technology. That is a strength of machine
learning in general: As Karpathy [50] noted, it has turned out
that for large sectors of real-world problems, collecting the
necessary data for implementing desirable behaviors through
ML ismuch easier thanwriting a traditional program to do the
same. Consequently, many K–12 ML initiatives are media-
centered [36], [47], [118] and offer very malleable, accessible
tools for a variety of media-related areas, such as describing
emotions through music [3], image recognition [59], [111],
[118], and speech recognition and synthesis [47], [98], [111].

The ability of K–12 student-made ML projects to easily
achieve nontrivial results—the ‘‘low floor and high ceiling’’
principle [73]—has been highlighted as a motivating factor
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FIGURE 1. Sixth-graders’ interface design of the voice recognition based
‘‘Watchman’’ app, which they designed for recognizing and reporting to
teacher which kids make noise when the teacher leaves the room [111].

for students [21], [36]. In one series of ML workshops,
middle-school children’s project ideas included, for example,
an app that identifies edible mushrooms and warns about
poisonous ones, an app that helps color blind people to iden-
tify colors, and an app that recognizes cheerleader poses to
help training [98], [111]. Figure 1 shows children’s interface
design for an app that used speaker recognition to report to
the teacher which kids make the most noise when the teacher
was away [111] (that app, ideated by children, also serves as
a good example case with which to discuss AI ethics.)

Pedagogically, co-designing real-world applications that
have immediate uses in the children’s world is based on the
assumption that the iterative process of creating ideas and
external representations of them, followed by a re-description
and refinement of them, can lead to increasingly sophisticated
understandings of the content domain [19], [52]. The peda-
gogical potential of co-design is based on the fact that during
acts of collaborative invention, making the ML models, and
testing and co-developing of their functionalities, the students
are not only sharing their evolving ideas and understanding,
but also creating a complex set of personally meaningful rela-
tions between abstract concepts and real-life problem-solving
contexts at hand [19]. Accordingly, the pedagogy inherits the
idea that understanding domain knowledge can be facilitated
by the so-called ‘‘21st century skills,’’ such as the ability to
collaborate to solve complex problems, to adapt and innovate
in response to new demands and changing circumstances, and
to use technology to create new ideas and knowledge [78].
The expansion of action possibilities with respect to truly
interesting learning tasks is also deeply connected to the
perceived ownership of learning and design [74]. K–12 com-
puting initiatives through ages have emphasized creativity;
that emphasis is continued with ML [3].

B. FOCUS SHIFTS FROM RULES TO DATA
Instead of relying on explicitly hand-coded rules that a com-
puter will follow on different inputs, many ML initiatives
guide students to train ML models by giving the system a
lot of data to learn from [21]. Studies have used drawings,
poses, speech, and video [59], [111], as well as data from, for

FIGURE 2. Ninth-grade students recording samples of musical
instruments they wanted their ML app to recognize [111].

instance, tracking sports activities [37], [126], webcam [93],
[94] gestures [36], web searches [118], and cartoon pictures
about kids and mock data about them [89]. As a result,
how to curate, create, clean, label, and feed the training data
has become a central learning objective for many machine
learning initiatives in school computing education [36], [47],
[55], [89], [111], [118]. The concerns in making those kinds
of ML systems work well in the classroom are much more
about the quality of data than about choosing the right rules;
for instance, one study looked at learners understanding the
impact of sample size, sample versatility, and negative exam-
ples on ML model [37]. That computers can learn from data
has been seen as one of the key lessons of teaching AI in
K–12 [22], [76], [102].

Many ML in K–12 initiatives have found that even though
the feature extraction methods in popular K–12 ML systems
may work reasonably reliably and be capable of capturing the
essential information from input, the student-produced data
has always noise and unwanted features in it—most likely
much more so than data sets produced by domain experts
working with traditional ML systems has [22], [36], [37],
[98], [110], [111]. For instance, photos taken by the children
are often out of focus, audio input can pick up plenty of
unwanted background noise from the classroom [98], and one
app that children designed to tell whether the speaker is a boy
or a girl was unreliable because primary school boys and girls
sound much alike [111]. Figure 2 shows an example of one
of the more brittle models: Ninth-grade students training an
ML model to recognize instruments from each other.

C. EMPHASIS OF SYNTAX AND SEMANTICS CHANGES
Syntax is one of the many sources of cognitive load in learn-
ing programming [54]. In programming education research
and psychology of programming, numerous initiatives have
addressed the challenges with learning syntax—recently
through, for instance, block-based languages [81]. Initiatives
on teaching ML in K–12 vary by their take on the roles
of syntax and semantics. Some initiatives have shifted the
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emphasis away from syntactic and semantic concerns, and
have allowed young children to engage in exploration of
how to control computations without the need to learn a
new syntax [21], [36], [110], [111]. Other initiatives, like
Wolfram Programming Lab, use traditional programming
language syntax to teach students ML topics [118]. Yet oth-
ers, like Snap!, combine easy-to-approach ML elements and
cloud services with block-based programming [47], [48],
or enable machine learning within Snap!, like the SnAIp!
project does [42]. Several projects have developedML exten-
sions for the MIT App Inventor [93], [124]. One initiative
taught young learners how to create an artificial neural net-
work (ANN) based model by designing the ANN structure—
number of inputs and outputs, hidden layers, and units per
layer) plus a few simple rules to implement backpropaga-
tion [21]. An example of a greatly simplified approach is
Google’s TeachableMachine 2, which allows the creation and
testing of ML models without either classical programming
or blocks—however, as an outcome students do not learn con-
cepts central to traditional programming, such as the syntax
and semantics related to loop variables, control structures,
conditions, or variable types. TM2 requires those important
concepts be taught in programming-oriented classes.

D. ML ALLOWS AGE-APPROPRIATE SHIFTS IN
PEDAGOGICAL ENTRY POINTS IN CLASSROOM
EDUCATION
In its quest to find working solutions for guiding the for-
mation of problem-solving schemas in computing classes,
computing education research has seen a broad variety of
pedagogical approaches over the years [86]. Cognitive-load-
theory oriented, constructionist, problem/discovery/inquiry-
based approaches—along with many others—have inspired a
multitude of learning designs for computing education, with
no silver bullet in sight yet [31], [86].ML education initiatives
in K–12 have relied on a similarly broad spectrum of peda-
gogical approaches, with their keywords ranging from project
based learning, constructionism [10], [77], creativity [3],
experiential learning theory [21], [89], co-design [121], and
cognitive apprenticeship [89], to gamification [71] and active
learning [10], [22], [88]. Attention has been paid tomake edu-
cation from kindergarten to high school age-appropriate [34]
and cumulatively progressive [49]. In kindergarten, for exam-
ple, ML education might focus on playful exploration and
awareness building, in themiddle school on experimenting on
problem-solving and some theory, and in the high school on
fostering core knowledge and exploring advanced topics [49],
[59], [97], [98], [111].

More often than not, however, reports on ML initiatives
discuss technology, content knowledge, techniques, or cur-
ricula instead of pedagogical principles and didactic elements
of those initiatives [60]. In research reports from ML work-
shops [59], [111], teaching the machine to recognize moods,
sounds, speech, and poses has resonated well with mod-
ern pedagogical approaches that support children’s agency
through playful and creative learning, bodily interaction,

FIGURE 3. A 3-year-old learning to identify and describe his own
emotions by teaching a computer to recognize them [110].

and collaborative advancement of ideas and understanding
(e.g., [45], [72], [80]).What is more, manyMLbased learning
environments provide an immediacy of action: As the models
are trained, one can right away experiment on them and judge
howwell they work. Such feedback loop also challenges chil-
dren to reason about the relationship between their new inputs
and the output provided by the interactive ML tools [110].

Figure 3 shows an example from a study where very young
children learned to identify and describe their own emotions
by teaching a computer to recognize them (kindergartens
use flash cards for similar purposes). History of learning
with educational robotics from Logo turtles to Lego Mind-
storms has shown the benefits of tangible design activities
in which interaction with people, materials, tools, and tech-
nology mediate collaborative construction of ideas [72]. But
the ability to control a computer by using one’s body to
train the computer to recognize things—faces, expressions,
poses, objects, and so forth—and then defining actions based
on those, promises new approaches to making computing
engaging, and it promises a whole horizon of modern ped-
agogical entry points. Recent research results have empha-
sized bodily interaction with ML systems [15], [36], [110].
Other research studies have shown the feasibility of teaching
ML concepts by incorporating them in athletic practice, and
having high-schoolers build, use, evaluate, and iteratively
improve machine learning models of athletic skills [126].
These initiatives, along with many others, have emphasized
the importance of positioning children and youth as active
subjects and teachers of ML systems, and not the objects of
teaching typical in more traditional models of instruction in
education.

E. INTERACTION WITH THE COMPUTER KEEPS SHIFTING
TOWARDS MORE BODILY FORMS AND USE OF NATURAL
LANGUAGE
Throughout the development of computing, the locus and
modalities of ‘‘user interface’’ have continuously changed,
and that development trend has always been away from the
computer and towards the user and communities of users [28].
Continuing the more than 70 years of advances in interface
design, learning ML by creating ML models offers new
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FIGURE 4. Twelve-year old children training an ML model to recognize
cheerleader poses [111] (GDPR compliant photo).

opportunities for bodily interaction and natural language [16],
[36], [37], [48], [102], [110]. For example, educational tech-
nology for learning ML principles allowed children to train
PoseNet-basedMLmodels to recognize different cheerleader
poses (Fig. 4) [111].

The changes in interface modalities are not only related
to what pedagogical models does ML match well (see the
section above), but also to teaching the principles of ML: One
of the ‘‘big five’’ ideas in K–12 AI [102] is that computers
perceive the world using sensors. Children’s interaction with
ML/AI-based tools has been studied extensively, and several
studies report anthropomorphic tendencies with very young
children, such as viewing robots more as peers than gad-
gets [92], seeing them as ‘‘people’’ who are less smart than
them [114], and consequently, developing relationships with
them and seeing them as psychological nonliving things [17],
[34], [103]. In ML education, children have felt a two-way
relationship where they can teach the machine, instead of just
the machine teaching them [15], [111].

F. THE STATUS OF ALGORITHMIC STEPS CHANGES
Much of computing education in schools revolves around the
concept of algorithm as it is typically described in compu-
tational thinking: step-by-step methods that people can trace
to solve problems for which a solution consists of discrete,
deterministic, unambiguous atomic operations [14]. But ML
initiatives differ by nature from ‘‘traditional CT’’ with regards
to the role of algorithmic steps. For one, it is practically
impossible to trace how a neural network reaches its solution,
and the individual ‘‘steps’’ in the model are not central. Many
applications hide most of what happens with the individual
neural network operations. What is visible to the user in ML
education tools can range from chiefly algorithmic [118],
[119] to chiefly data-driven [77], [125], [126].

A number of ML education tools do not require exposure
to the concept of algorithmic steps—on the contrary, some
celebrate the shift from ‘‘coding to teachable machines’’ [15].
In training a model, in testing a model, and in connecting the
model with actions, there is less a need for thinking about

FIGURE 5. A preschooler and older brother studying at home, creating a
model to recognize gestures [110] (GDPR compliant photo).

algorithms, and more concern with describing users’ inten-
tions, and especially with designing data sets that can be used
for creating the desired behaviors [111]. Learning about ML
systems in the classroom does not need to be predominantly
about traceable, procedural execution of operations but about
getting enough of the right kind of data for the job [55],
[102]. Learners need to understand howML ‘‘reasons’’ using
models and representations built from data, and not rules
coded in the system [55], [102]. Designing an algorithm gives
way to derivation of models operating at a meta-level. That
does not, however, diminish the need for teaching traditional
CT, because real apps are almost always a combination of
data-driven and rule-driven computing.ML is an addition, not
a replacement.

G. GLASS BOXES AND BLACK BOXES ARE RELOCATED
All educational approaches in computing education contain
black boxes. The choice of where those black boxes are
located is essentially a choice of what children can explore
with the system, and what will they not learn about [73].
Traditional computer programs are glass boxes to the point
where their flow of program execution, changes in values
of variables, and everything else a program does are all
hand-coded in the program, and the program flow can be
tracked, visualized, and paused at any point to examine the
program state at any given step of execution [86]. Most ML
models are more opaque in the sense that the weights and
parameters of neural networks and regression models are not
set by hand, but they are trained by feeding the model a lot of
data, each sample adjusting the model’s internal parameters
bit by bit. From the viewpoint of traditional programming,
the weights and parameters of a trained model are a black box
in the sense that examining them lends no interpretation on
what the neural network does or how. Many AI in K–12 edu-
cation initiatives consider the public perception of AI as black
boxes a major challenge for AI education [36], [42], [55],
which makes explainable AI (XAI) a major opportunity also
in K–12, with example applications emerging [99].

The location of black boxes shift over learners’ skill pro-
gression. In early machine learning education children can
train ML models and use them to control the computer
(for instance, with Wolfram Programming Lab or Snap!), but
the actual mechanisms remain a black box, and can only be
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opened much later in the school. In research onML education
the opaqueness of ML models has faced issues known to
K–12 educational technology designers through ages [36],
[73], [99]: The more accessible the systems are for novice
learners, the more actual ML mechanisms they need to hide
from the users—and the less students learn about what goes
on under the hood. However, experiments with older, high
school students building an object recognition system from
the scratch have showed that ML models that rely on very
few features can be programmed from scratch in elective
programming classes [59].

H. THE NOTIONAL MACHINES EVOKED IN MACHINE
LEARNING DIFFER GREATLY FROM THOSE OF
TRADITIONAL PROGRAMMING
As Sorva [87] wrote, much of computing education research
has focused on overcoming the challenge of how to develop
a robust conception of a notional machine or a mental model
of what the computer does when it executes a piece of code.
In the extensive body of literature on notional machines
with novices and experts [87], little is relevant to ML. For
instance, neural networks and regression models function
very differently from traditional programs both at the abstract
level and at the concrete level: In the abstract sense, passing
data through a neural network is conceptually very different
from the execution flow of a traditional program. In the
practical sense, neural networks are embarrassingly trivial
to parallelize on thousands of special-purpose processing
cores that any cheap graphics card has [50]. But the more
the ML processes are black-boxed, the more limited the
prospects of constructing accurate notional machines related
to them [36]. The notional machines and mental models for
ML in computing education are bound to be very different
from those of traditional programming education, and there is
little research on the former in computing education research
body of literature.

I. MACHINE LEARNING SYSTEMS ARE TESTED AND
DEBUGGED DIFFERENTLY FROM RULE-BASED PROGRAMS
Earlier research on debugging strategies in K–12 computing
education offers little advise for those ML education sys-
tems where children can train their own ML models. That is
because ‘‘debugging’’ of ML models turns out to be very dif-
ferent from debugging traditional rule-based programs [36],
[126]. Many machine learning algorithms are ‘‘soft’’ in the
sense that their results are not straightforwardly discrete but
tell, for instance, the probabilities of the input belonging to
different classes—for instance, of Google’s K–12 TM2 tool
shows, as percentage, the model’s confidence in classifying
an image. Machine learning models are typically also ‘‘brit-
tle’’ in the sense that when trained in one environment with
one kind of data, small changes in the environment or input
data may render the model nearly useless. Children have
learned the concepts of softness and brittleness, for instance,
when trying their mood recognition system in a different
location with different background [111]. That issue has been

widely recognized in ML education, and there is research
on using very simple examples to teach high-school students
concepts like overfitting, accuracy, precision, and recall [22].

What is more, the workflows and philosophy of testing,
debugging, and fixing ML models differ greatly from debug-
ging traditional programs. Debugging traditional program
code should not be based on trial and error, but on systemat-
ically tracking and understanding what happens on each line
of the code. On the contrary, training black boxedMLmodels
is ultimately based on trial-and-error type search of optimal
hyperparameter and feature space. A number of initiatives
have focused explicitly on teachingMLworkflows, described
in different ways but typically including variants of ‘‘data
collection, data entry, data visualization, feature engineering,
model building, model testing, and data permissions’’ [89],
[111], depending on the model.

J. JUDGING SYSTEM GOODNESS BECOMES MORE
COMPLEX
Machine learning shifts the attribute of ‘‘goodness’’ from
correctness to effectiveness. The main epistemological stance
of traditional, rule-based computing used to be correct-
ness and verifiability in deterministic systems [57], which
then expanded to more holistic views of computing sys-
tems, such as the DRUSS principles (dependable, reliable,
usable, safe, and secure). In many cases ML solutions can
at best be ‘‘probably approximately correct,’’ their goodness
statistically determined [105], which is reflected in many
ML in K–12 initiatives [22], [37], [111]. Effectiveness has,
of course, been a long time keyword in K–12 computing
education—take, for example, RoboCup football matches
between children’s robots, where no system can be ‘‘cor-
rect’’ but goodness of systems is measured by how often
they win against other football-playing robots. It turns out
that teaching learners about the strengths and weaknesses of
ML-based technology can differ greatly from the same related
to rule-based programs [55].

Reductionism, or the ability to fully explain the functioning
of a large system by the functioning of its basic, atomic
elements, gives in many ML applications way to emergence,
where complex systems have properties that only arise from
the interactions of large numbers of interacting parts. On a
continuum from a bivalent view of correctness (the program
outputs are either correct or incorrect) to a more fuzzy view
that involves reliability, efficiency, and the like, ML is situ-
atedmore towards the same endwith educational robotics and
other tangible learning environments, that rely on contextual,
relative, and pragmatic view of goodness.

K. APPROACHES TO STEM/STEAM INTEGRATION CHANGE
Computing education has for decades been gradually mov-
ing from closed problems towards open problem classes
along many dimensions [90]. Computing in STEM educa-
tion has increasingly embraced open-ended, authentic, and
hands-on education, too [8]. A number of existing ML
tools have the potential to further facilitate that shift in the

110566 VOLUME 9, 2021



M. Tedre et al.: Teaching Machine Learning in K–12 Classroom: Pedagogical and Technological Trajectories

domain and nature of learning problems and projects in the
STE(A)M classroom [15], [34], [63]. ML projects at schools
have fruitfully started new approaches to complement earlier
STEAM integration approaches (traditionally focusing on,
for instance, the principles of procedural or reactive program-
ming with sensor-based artefacts [34], [47], [118]).

In the STEAM class, students can first explore what ML
systems are capable of—for example, they can experiment on
trainingMLmodels on graphical user interface based systems
or drag-and-drop systems [47], [118]. Once familiar with how
ML works, students can start by defining the problem, issue,
or concern in STEAM fields they want to solve. This squares
very well with the changing learning process when mov-
ing from STEM to STEAM education. STEAM education
emphasizes real-world problems and exploration of multiple
solutions to them, and ML is at its best with rich, real-world
data. A number of K–12 ML platforms designed for rich
multimodal material (pictures, sound, movement tracking) fit
well STEAM education in those cases where laws, formulas,
and rules may not be readily available. Epistemologically,
ML tools in STEM can facilitate a shift from rule-based
(deductive, positivist) reasoning towards data-driven (induc-
tive, falsificationist) reasoning—which is well in line how
natural sciences work.

Some ML-based systems have enabled really ‘‘messing
about in science’’ [33]: Example data sets used in K–12 ML
education include data from the bicycle sharing system in
Chicago, Spotify song feature data set, and face recognition
data sets [62], language corpora fromDr. Seuss, Taylor Swift,
and Shakespeare [108], and there is an example of teach-
ing ML concepts in the middle school using the advanced
RapidMiner software, making models of mango sweetness,
mango quality, and the mango market [77]. AI has been
taught along with the philosophy and history of science,
too [34], [85]. For messing about in science, many ML-based
learning environments offer high degrees of freedom for a
broad variety of experiments.

L. ML HELPS STUDENTS LEARN HOW THEIR WORLD
WORKS
One tenet of technology education and computing for all
initiatives has been to teach students how the world around
them works [31]. Computing education should be able to
banish magic from computing systems by exposing the
mechanisms by which they work. Educational technology
efforts from the Little Man Computer to block-based pro-
gramming have done a great job teaching how rule-based
systems work [32], [96]. But many features of services
most familiar to children today—such as TikTok, Spotify,
Youtube, and Netflix—as well as many features of technol-
ogy children use daily—such as face recognition, speech
recognition, recommenders, and targeted advertisement—are
better taught using ML based educational technology than
they are with traditional programming [106]. Many ML in
K–12 initiatives explicitly address the need to teach chil-
dren the aspects of modern AI that affect their life and

future work [10], [15], [36], [97], [109]. Again, data-driven
and rule-driven approaches both need to be taught, and ML
does not make teaching rule-based programming obsolete.
Yet, ignoring ML in computing education leaves open a gap
that is widening by the day.

M. APPLICATIONS OF ML TECHNOLOGY BRING ABOUT
SOME NEW ETHICAL CONCERNS TO BE INCLUDED IN
COMPUTING EDUCATION
ML in K–12 educators have argued that any instruction
on ML needs to also include ethics of AI [102] and chal-
lenge the mythical AI narratives from the popular media
and Hollywood [3], [21], [55]. It has been suggested that AI
needs to be demystified [38], andmagic banished from it [42].
Many initiatives take the ethical challenge very seriously:
For instance, the extensive German AI/ML learning package
deployed to thousands of schools had a heavy focus on ethical
and societal aspects, including scenario work for what kind
of a future would we want from learning machines [79].
What is more, ML classes aimed at high school girls have
been used to encourage broader participation in comput-
ing [104]. The rationales for including ethics differ only to a
limited degree from the rationales for establishing computing
ethics as a cross-cutting computing curriculum subject in the
1990s [95]. Yet,ML does bring new perspectives to topics like
privacy, surveillance, job losses, misinformation, diversity,
algorithmic bias, transferability, and accountability, among
others [55].

V. PITFALLS AND WEAKNESSES
Machine learning provides to computing and automation a
perspective that is markedly different from the perspective
of rule-based computing and programming-based computa-
tional thinking. It reaches to some areas that coding initia-
tives cannot reach, while the opposite is equally true. ML in
K–12 literature lists a large number of weaknesses, pitfalls,
and dangers related to ML in K–12 education.

Firstly, especially in the lower school grades and with
‘‘low floor’’ apps, learning can be shallow and superficial,
because children learn workflows, not the internal ML mech-
anisms. Those workflows are described differently in dif-
ferent initiatives. For example, one initiative described their
workflow as data collection, data entry, data visualization,
feature engineering, model building, model testing, and data
permissions [89]. Another described it as requirements anal-
ysis, collecting the training data sets, training the model,
evaluating the model, and deploying the model to work in
apps [111]. Also parts of the workflow can be black-boxed:
One study focused on just two stages of the workflow, data
labeling and evaluation, and black-boxed the other parts of
the workflow [36], [37].

Secondly, there is no consensus over the trade-offs neces-
sitated by black-boxes, and there is a paucity of research
on their effects. Interacting with highly opaque processes
may lead children to develop inaccurate or oversimplified
notional machines, which can be difficult to change once
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formed [36]. Black-boxing also risks unrealistic expectations
of what ML systems can do, and in case of younger children,
anthropomorphizing and personification of ML systems [17],
[34], [55], [114]. At the same time, ML in K–12, especially
with younger learners, requires hidingmuch of the underlying
complexity. Research on explainable AI in K–12 is forming
up [99], and there are initiatives to expose the implementation
mechanisms of AI in high school classrooms [42], [59], but
the question of black-boxing in K–12 ML education remains
essentially an open question [36].

Thirdly, compared to ML systems, classical AI systems
are better for learning the rules underlying traditional AI
(because children program the rules in them)—take, for
instance, expert systems or chatbots [120]. Rule-based pro-
gramming is based on relatively simple Boolean logic and
discrete mathematics, the basics of which can be taught
relatively early, and then deepened at age-appropriate levels
from primary school to high school. By contrast, ML is
based on advanced mathematical concepts beyond the chil-
dren’s grasp, such as statistics and probabilistic model-
ing [21]. What is more, opening the ML black box in
education requires education to address skills from both
extremes of the applied–formal spectrum: very practical and
very theoretical [21]. ML in K–12 initiatives share the chal-
lenge of how to ease the entry to ML and avoid advanced
mathematics [21], [22].

Fourthly, there is no agreement over the relationship
between ML skills and knowledge and the multitude of skills
and knowledge labeled ‘‘computational thinking’’ (CT) [14].
As nearly all ML apps are really combinations of rule-based
code and ML models, it has been suggested that traditional
CT frameworks should be extended with ML-related con-
cepts, such as classification, prediction, and generation [107],
[108]. At a more general level, it has been argued that if
computational thinking is about how to make computers do
jobs for people, ML is, by definition, a part of computing’s
disciplinary ways of thinking and practicing—in other words,
a part of computational thinking [14].

Fifthly, compared to computing education research on pro-
gramming in K–12, and even compared to research on teach-
ing rule-based ‘‘good old-fashioned AI’’ in K–12, research
on how to teach ML in K–12 is in its infancy [17], [36],
[55]. Lack of experience on age-appropriateness of ML con-
cepts has caused surprises, such as cases where K–6 children
grasp seemingly much more sophisticated ideas quickly but
simpler-looking ideas may take longer [34]. In the absence of
long-term experience from ML curriculum implementations
at different school levels, continuity of AI/ML education from
kindergarten to high school is an equally daunting challenge
as it is in traditional computing education [34]. And the
pet peeve of CT critics—‘‘How does one measure student
progress in CT?’’—applies equally well to ML, too.

Finally, a topic high on the hype cycle risks unreal-
istic expectations and misconceptions. ML education in
K–12 should not repeat the inflated expectations about Logo
that ultimately led to disappointment when the initiative could

not fully deliver to its promise [4]. Although ML makes
possible automation of new classes of jobs that could not be
automated before, it is still very limited in its applications,
and much of the ML hype in the popular press is based on
limited understanding of what ML actually does [11]. Black
boxes further obscure functionality, and the ‘‘Eliza effect’’—
where a system appears to observers as much smarter than
what its internal functioning warrants [55]—is a real danger
in ML education.

VI. CONCLUSION
The frontiers of computing education have been in constant
flux throughout the disciplinary history of computing [96].
Computing education has always followed the state-of-the-art
technology in the field, with the help of improved interfaces
and layered stacks of abstraction levels to hide the underly-
ing complexity. As machine learning is making its way to
becoming mainstream technology [50] and core computing
knowledge [82], [83], and as ML applications have become
commonplace [9], computing educators have anticipated a
shift in K–12 computing education, too [15].

The nascent body of literature on teaching ML in
K–12 education is rapidly developing along a route that is in
a number of ways different from the traditional programming
and computational thinking oriented computing curricula.
That new kind of computing education is characterized by a
number of opportunities and changes in thinking, including:

1) New classes of real-world applications for classroom
experiments

2) Shift from rule-driven to data-driven thinking
3) Change in the role of syntax and semantics
4) Activities well aligned with modern pedagogy
5) Access to bodily and natural language interaction
6) A shift away from algorithmic steps
7) Higher level of abstraction and black-boxed

mechanisms
8) A need for new notional machines
9) New models of testing and debugging

10) New attributes of goodness of programs
11) Deeper integration with STEAM subjects
12) Ability to explain many services children use daily
13) Direct connections to topical issues in AI ethics

But as schools and teachers struggle with the recent wave
of integrating computational thinking into school curric-
ula [13], teaching ML in K–12 poses an even more daunting
challenge. The computing education research body of litera-
ture contains remarkably little research on how people learn
to train, test, improve, and deploy ML systems [15], [82],
[83]. Research onML education is in its infancy, most reports
being either analytical—concept development, essays, or cur-
riculum descriptions—or, if empirical, of the exploratory,
proof-of-concept, or Marco Polo types (‘‘I went there and I
saw this’’). Literature reviews have only recently started to
emerge [60], [123].

As it has taken computing educators many decades to
bring traditional programming and computational thinking
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into school curricula in many countries [31], one can question
whether time is ripe yet for expanding computing education
with another addition. Schoolteachers are already struggling
with the recent wave of integrating computational thinking
into school curricula [13], [58]. Computing, computational
thinking, or programming, is restricted to a rather limited
number of classroom hours in national curricula; or have been
more, or less, successfully ‘‘integrated’’ into other subjects.
Perhaps that time is better spent on the better researched
traditional computing curricula than a newer topic on which
there is little literature, material, classroom examples, readily
available learning objects, or pedagogical experience.

But despite the challenges, there is a clear need for under-
standing how ML-based and data-driven systems in people’s
everyday lives work [35]. Thus, there is a need to build ML
education from ground up: research is needed for pedagogical
models, skill progression schemes, appropriate educational
technology, ethical dilemmas, domain integration, and all
other elements of education. This article has outlined some
elements of education that computing educators need to
consider regarding machine learning in the K–12 classroom.
This is a vital area, if future citizens are to be empowered
in regard to the systems around them, and that warrants con-
siderably more focus from the computing education research
community.
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